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Part 1

Algebraic Geometry I

22/8/29 to 22/10/26.
Lecture 1 to Lecture 14 and a part of Lecture 15, but actually, I put this part into Lecture 14.



1

Lecture 1.

22/8,29.

1.1 §A. What is Algebraic Geometry?

e Objects: set of solutions of finitely many polynomials in several varibles.

Example 1.1.

Nodal curves: X3+ Y3 — XY = 0, see the local of the singular point is a ’cross’.
Cuspidal curves: Y2 — X3, the local is a cusp.
Elliptic curves: Y? — X (X — 1)(X — 2), it consists of two parts.

let k& be Q, consider Q?, the rational plane, and X? — aY? — 1 with a € Q, called Pell

t’+a 2t
t2—a’ t2—a

equation, and the solutions are ( ), in particular, see the circle case which we have

known the rational solutions before.

e Relations:

(1)
(2)
(3)

k = R related to differential geometry.
k = C related to complex geometry.

k= Q, [, related to number theory.

e Solve Problems

(1)

(2)

Classfication(up to some equivalence).

e.g. MMP, thanks to Mori, we go to higher-dimensional geometry.

Topological Properties.
e.g. Hodge theory.

Existence of Solutions.(k = Q)

e.g. Diophantine geometry.

Counting Problems.

e.g. Gromov-Witten theory.



1.2 §B. What is a Space?

(a) |X| = set of points.

(b) T = topology on X.

(¢) O = functions on open subsets of X.

(d) Local model, like Balls on Euclidean topology.

Remark 1.2. The structure of a space can be understood by considering all functions on all

open subsets = Sheaf!

[. Presheaves and Sheaves

1.3 §A. Presheaves and Sheaves

Let X be a topological space, D(X) = set of open subsets of X.
For x € X, U(z)= set of open neighborhoods containing x.

Definition 1.3 (Presheaf). Presheaf is a contravariant functor .% : C? — Set, more explicitly,
we have restriction morphisms resyy : . (U) — % (V) for opens V' C U, satisfying additional

axioms:

Al. O(@) is the terminal object in the target category.

A2. resyy = idg ).

A3. resyw =resyw oresyy.

We will use the special case 21b.

Example 1.4.

(1) Zero sheaf: .#(U) = 0 for all open subset U.

(2) Constant presheaf: take a fixed abelian group A, % (U) = A for all open subset U.

(3) Presheaf of continuous functions: take U € D(X),

{f:U — R continuous } U # &,
0 U=2.

(4) Presheaf of holomorphic functions: take X = C", #(U) is set of f : U — C which are

holomorphic.



Definition 1.5 (Section). Section of a sheaf .7 is just an element of .# (U), in partacular, if

s € #(X), we call it a global section.

Definition 1.6 (Stalk). For z € X, we define the stalk at x .%, as

F, =l F(U) = (s.0)/ ~

xzelU
U open

where the equivalen relationship is (s,U) ~ (¢,V) if there exist open W C U NV such that

sw = tw, where sy means the image of restricting s to W.

See we have a natural morphism .#(U) — .%, by s +— (s,U), denote the image as s,.

Remark 1.7. s, is not determined by its valume at x, but what’s the value at a point? Now,
we consider it as a continuous function to get an intuition, see x and 2x, they are both 0 at 0,
but there is no neighborhood U of 0 such that they coinside. You can also see the nodal curves

we mentioned at the begining.

2 Lecture 2.
22/8/31.
Fact 2.1. .%, is an abelian group as
[(s1, Uh)] + [(s2, U2)] := [s1|vynw, + S2lvanus, Un N Us]
Just check it by computation, I skip the proof or, leave it as an exercise lol.
Picture 1
Remark 2.2. Take U € D(x), #(U) — %, is a homomorphism of abelian groups by
s [(s,U)]

Definition 2.3 (Germ). s € #(U), x € U, define s, := [(s,U)] € #, which is called the germ

of s at z.
Remark 2.4. Germ at x # value at  which we have seen before.

e Functuin on a set which is a generaliztion of traditional notion of function. X = a set,
o/ = {A;|x € X} a family of abelian groups indexed by X.
Define an .o7-valued function as a map.
s: X — |_| A,
zeX

r— s(z) € A,



See that the value area for every point of domain is different, we can also see this phenomenon

in affine scheme case: f € A, f — A/p — Frac(A/p).

Let .# be a presheaf on a topological space X, U C X open subset, take s € .Z(U), s : U —

| |,cr Fo is a F-valued function on U.

Compare it with the valued functions:

(1)
(2)

A, =k eg. k=R,C, even finite fields.

Given a continuous function s : U — R

8:U—>|_|OU,xi> |_|[R
zeX
by

T > Sy > Si(T)

Where Oy, := stalk of the presheaf of continuous functions on U.
Ove 25 k = ker(o,) = {s, € Opls.(r) =0}

Fact 2.5. ker(o,) is the unique maximal ideal of Oy, hence

OUJ iz—) OU,x/mx =R

Remark 2.6. It is the notion we considered in manifolds, we want to glue the local models to

get a global one.

e Presheaf is NOT good as we expect | See the following strange cases:

(1)

Take nonzero s € .#(U) which induces s : U — | |
sy =0 forall x € U.

vev 2 DYy T+ 5,. It may happen that

Example 2.7. Take X =R, let
{f:UxU— R| f continuous } U # @&
0 U=0o

A= {(z,z) | x € R} € R xR, choose a continuous s : U x U — R such that s = 0 in a
neighborhoodof ANU x U, but s # 0 = s, = 0 but s # 0 in global!

picture 2

Compatible local sections maybe can NOT be glued to a global section.

Example 2.8. X = {z,y} a set of two points with discrete topology.
A=17.
% = constant presheaf on X with A.

For any open subset U C X, let



A HU#£D
0 fU=0

h
I

Take s; € % (z) such that s; = 1, and sy € % (y) such that s, = 0, but we can not find a

global section such that its restriction to each open subset is we want.

To deal with these strange cases, we arrive at sheaf.

Definition 2.9 (Sheaf). Let .# be a presheaf on X, then .# is a sheaf if every local sections

which are compatible can be glued to a unique global one.

picture 3
We have a natural way to get a sheaf from a presheaf(which is unique by universal property, for

more details, see [Har77]).

Definition 2.10 (Sheafification). Let .# be a presheaf on X, the sheafification of .Z is a sheaf
Z on X defined as following:

F(U):={s:U — | | Z. | s satifies (a) and (b)}

zelU

(a) s, € Fy,

(b) Va € U, there exists W € D(z) and t € .Z (W) such that t(y) = s(y) Yy € W, see it means

s is defined locally! Since in every point, it coinsides with an element in a neighborhood.

picture 4

2.1 §B. Morphisms between Sheaves

After we get objects, we talk about morphisms between them.

Definition 2.11. Let .% and ¢ be two presheaves on X, a morphism ¢ : . % — ¥ is just a

natural transform, isomorphism when it has an inverse.

Example 2.12. Let .# be a presheaf on X, F the sheafification of .7 , then there exists a
natural morphism from .# to F

FWU) = F
by

s (T 8g)

—~

Remark 2.13. ¢ : .% — .% induces an isomorphism .7, ~ :/5\’; forall x € X.

10



Definition 2.14 (Germ of morphisms). Let ¢ : # — ¢ be a morphism of presheaves on X, let
x € X, the germ of ¢ at z is defined as

Op Ty — Y
[(s,U)] = [(¢u(s),U)]

Definition 2.15 (Subsheaf). Let .# and ¢ be presheaves on X.
(1) ¢ is called a subpresheaf of .7 if 4(U) is a subgroup of .#(U)
(2) If F and ¢ are sheaves, then call 4 a subsheaf of .Z.

Example 2.16. X = R".

% = sheaf of continuous functions on X.
¢ = sheaf of C* functions on X.

Then ¥ is a subsheaf of .%#.

Definition 2.17 (Kernel). Let ¢ : . # — ¢ be a morphism of presheaves, define the kernel
presheaf ker ¢ as
ker(U) := ker: py: Z (U) — 4(U)

Exercise 2.18. If .7 and ¢ are sheaves, then ker(y) is a sheaf.
Proof. We can prove this exercise in two ways:

(1) My solution is using the sheafification functor~is right adjoint, hence commute with ker, so

ker o ~ "o ker.
(2) Thanks to Shengyu Hou, we can prove it by 3x3 lemma, and I will write it next time.
O

Definition 2.19 (Image presheaf). Let ¢ : . % — ¢ be a morphism of presheaves, the image
presheaf preim(yp) is a subsheaf of & defined as

preim p(U) :=impy : F(U) = 4(U)
Remark 2.20. Even .# and ¢ are sheaves, preim ¢ may NOT be a sheaf!

Definition 2.21 (Image sheaf). Let ¢ : . % — ¢ be a morphism of sheaves, the image sheaf
is the sheafification of preim(¢p).

Definition 2.22. Let ¢ : % — ¢ be a morphism of sheaves.

11



(1) ¢ is injective if ker(¢p) is zero sheaf.
(2) ¢ is surjective if im(p) = ¥(see it is after sheafification, preim(y) may not be ¢).
Remark 2.23. Let ¢ : % — % be a morphism of sheaves.
(1)
¢ is injective <= VYU € D(x), ¢y is injective
—Vre X, ¢, ¥, = 9, is injective.
(2) ¢ is surjective <= Vo € X, ¢, : F, — 9, is surjective.
(3) ¢ is isomorphic <= Vz € X, ¢, : #, — ¥, is isomorphic.
Remark 2.24. Let .%# be a presheaf, ¢4 a sheaf such that .% is a subpresheaf of ¢, then
FCFCY

Definition 2.25 (Quotient and cokernel). I will write this next time

2.2 §C. Base Change

Definition 2.26 (Direct image). Let f : X — Y be a continuous map between topological
spaces. Let % be a sheaf on X, then the direct image f..# of % is defined as:

(1) fFU) = F(f7(U)), U eDY).

(2) resﬁf = res;f’?_

HU) V)

picture

Example 2.27. Let X be a topological space, Y a single point, f : X — {pt} =Y, ¥ is a
sheaf on X. See f..Z7(Y) = .7 (X), namely f..Z is taking global section.

Definition 2.28 (Inverse image). Let f : X — Y be a continuous map between topological

spaces, ¢4 a sheaf on Y. Define a presheaf Pf~'¥ as following:

PFIYU) = lim 9(V) VU eD(X),
fU)cv
VeD(y)
ie. Pf'9(U) ={(s,V)|se9V),f(U) CV}/ ~, more explicitly, (s,V) ~ (s, V') <
W € DY), F(U) S W SV AV, s o=+ |-
Definition 2.29 (Inverse image). The inverse image f~'¥ is the sheafification of Pf~'¥

12



Example 2.30. Let .# be a sheaf on X, ¢ : U — X the natural inclusion where U is an open
subset of X. Define .7 |y as following:

F v (V) :=.%#(V), VCU both open subsets.
Then i '% = .7 |y.
eCompare stalks under base change.

(1) Direct image f : X — Y continuous, x € X and y = f(z) € Y, F a sheaf on X, then f

induces

fx(f*y)y%yx
[(s,U)] = [(s, f~H(U))]

Remark 2.31. In general, f, is neither injective nor surjective.

3 Lecture 3.

22/9/5
More on f, : (fo# )y = Fu.
Example 3.1. 1) f:R2 =X 2% Y = R2, (21, 22) > (21, 22)
X : Euclidean topology,
Y : cofinite topology(closed subsets are finite subsets),
o : the original point,
Z : sheaf of R-valued continuous functions, sheaf on X.
Take h : R? — R continuous with & [5on= 0 and h [y @1y does not vanish. See h, = 0 in
%, but not 0 in f,.#, hence f, is not injective.

Remark 3.2. If f is a homeomorphism, then f, is an isomorphism.

e Stalk of inverse image.

f: X =Y continuous, x € X, y = f(x), % sheaf on Y.

fx:<f71y)x_>‘g\y
[(s,U)] = [(s,V)]

where s € .Z(V), f(U) C V, see [(s,U)] is really a representative of elements of (f~1.%),.

13



Proposition 3.3. f, is an isomorphism.

ebExactness under Base Change

Definition 3.4. --- — .%; 25 Z;, RAEEN Fivg — - is exact if ker(p;41) = im(¢p;) for any i.
Proposition 3.5. (1) f. is left exact.

(2) f~1is exact, since f, is an isomorphism.

3) fH AL

Remark 3.6. All concepts of sheaf of abelian groups can be defined for sheaf of rings(commutative

with identity).

3.1 §D. Ringed Space

Definition 3.7.

(1) A ringed space is a pair (X,Ox): X a topological space, and Ox a sheaf of rings on X.
(2) Ox is called structure sheaf.

(3) Elements of Ox(U) are called regular functions on U, where U is an open subset of X.

X topological space
Example 3.8. (1) (X,0x) =

Ox = sheaf of R-valued continuous function

X differential manifold
(2) (X,0x) =
Ox = sheaf of C* functions

X complex manifold
(3) (X,0x) =

Ox = sheaf of holomorphic functions
Definition 3.9 (Locally ringed space). Ox, is a local ring, Vx € X.
Definition 3.10.

(1) Morphism between ringed space is a pair (f, f#)

f X — Ycontinuous

f#: Oy — f.Ox a morphism of sheaf of rings(hence natural)

14



(2) For locally ringed soace, we need

ff : Oy, f(z) — Ox is a local morphism

(s, D)) = [(f#(s), f7H(U))]
(3) Isomorphism:

(a) f is a homeomorphism.

(b) f# is an isomorphism of sheaves of rings.

Example 3.11 (Local model of diff/cplx mfd). (X, Ox) = differential /complex manifold then
Vo € X, 3U C X such that

(U, Ox |U) = (3(0,1), 03(0,1))

4 Lecture 4.

22/9/7.
We still talk about f,.

Example 4.1. S =Riemann Sphere, S=Cu {o0} compact complex manifold.

C\ {0} = C\ {0}
1

2 —
z

Take X = S U S with Euclidean topology.

# = sheaf of holomorphic functions on X.

Y = S U S with trivial topology(open sets are only @ and Y').

xSy

(fseF)e = F(X) ={g: X = C| g |g= constant} so we may have g; = 0 and g = 1.
Consider f, : F(X) = (fuP ) = Z,.

g=20 zeS

~

g=1 z¢58

(i) Not injective. = g # 0 but g, = 0.

(ii) s € #, such that '(s,U)" is not a constant(in any neighborhood of ) = there does not
exist g € .#(X) such that g, = s.

[I. Affine Algebraic Sets

Affine algebraic sets= topological space of local model in algebraic geometry.
k = afield, e.g. R,C,Q,[,...

15



4.1 §A. Affine Algebraic Sets

Some notations:

n € Zsy Ay = affine k-space of dimension n
={(x1,..,zp |2, € K)}

= k" (as sets)
k[x1,...,x,] =ring of polynomials in n variables.
Definition 4.2. Let S C k[zy, ..., z,,], we define
Z(S)={z e |VFeS, F(z)=0}

We call Z(5) the affine algebraic set defined by S(it is namely the common zero locus of elements
of S).

If S={F,..., F,} is a finite set, we denote Z(S) by Z(Fi, ..., F},).
Example 4.3. 1) Z(1) = @, Z(0) = A}.

2) If n=1and S # &, then Z(9) is a finite set. Conversely, given a finite set {z1, ..., z,,} C AL,
just take F' = [[",(X — z;), hence Z(F) = {x1,...,xmm}. So in A case, affine algebraic set=
finite set, just cofinite topology.

4.2 §B. Zariski Topology
Lemma 4.4. S C k[xy, ..., z,), I = ideal generated by S, then Z(I) = Z(5).
Corollary 4.5. It is enough to consider the affine algebraic sets defined by ideals.
(i) M Z(IL;) = Z (3_ I) arbitray intersection.
(i) U™Z(1;) = Z(N™I;). finite union.

Definition 4.6 (Zariski topology). Closed subsets of A} in Zariski topology is the affine algebraic

sets of A}.
For V' C A}, it can inherit Zariski topology from Aj}.

Proposition 4.7. F : A — k = A}, where F is a polynomial, F is continuous in Zariski

topology.

Proof. Let V = {ay,...,a,} C A} closed subset(=finite set), F~}(V)U F~(a;) =V (J[(F — &;))

closed in A} = F'is continuous. O

16



Remark 4.8. Zariski topology the weakest topology on A} such that F': A — k is continuous,
where k with cofinite topology.

Remark 4.9. Zariski topology is very different from the Euclidean topology.
Let’s talk some characters of Zariski topology:

(a) Closed subsets are ‘very small‘(measure=0), opens are ‘very big‘! E.g. A} Zariski=cofinite

# open ball in Euclidean.

(b) Zariski topology is NOT Hausdorff. E.g. k = infinite field, Uy, Uy C A; then Uy N Uy never
empty.

(€) AP kx-- k2 AL x - AL However, Zariski on A # product topology on AL x - - AL

n-times n-times

(d) YF € k[zy, ..., x,], define D(F) := A\ Z(F) is open, then {D(F) | F € k[zy,...,x,]} form a
base for Zariski topology.

(e) Many difficulities in algebraic geometry to study local properties at a point are caused by

(a) and (D).

4.3 §C. Ideals of Affine Algebraic Sets

Definition 4.10. Let V' C A} be a subset, then define I(V') := {F € k[xy,...,xz, | F(v) =0 Yov e V]},

it is obviously an ideal.
Fact 4.11.

(1) If V is an affine algebraic set, then Z(I(V')) = V. It is obvious that V' C Z(I(V)), conversely,
V = Z(J) where J is an ideal, then J C I(V), V = Z(J) 2 Z(I(V)), hence equal.

(2)

{affine algebraic set in A} } — {ideals in k[zy, ..., z,]}

Vi I(V)

is injective, hence if I(V}) = I(V5) then V; = V4. In particular, if W 2 V| then 3 f polynomial
that f |w=0, f |y# 0, a polynomial can distinguish two affine algebraic sets.

(3) J € Z(I(J)), in general not equal unless J is radical, e.g. J = (z%) = V(J) = {0} =
1({0}) = (z) # («?) but /(%)

(4) If k is infinite, then I(A}) =0, e.g. if k = [, consider F' = [[_ (X — a;), then F € I(A}).

17



Proof. n=1. Since every F € k[X] has only finite roots, then for any subset S of k[X],
Z(S) # A}, since Al has infinite elements.

n=2. Take P € k[X1,..., X,] such that P # constant, then we can write P = a,(X1, ..., X;,—1) X|+
-+, assume r > 1 and a,(Xy, ..., X,,_1) # 0.
= By induction, 3(by, ...,b,_1) € A" such that a,(by,...,b, 1) # 0
= f(X,) = P(b1,....,bn_1,Xy) = a-(b1, ..., b,—1) X" which has only finitely mant solu-
tions in k.
= there exists b, € k such that f(b,) # 0, hence P ¢ I(A}).
= I(A}) = 2.

n=3. a = (ay,...,a,) € A}, then I({a}) = (x; — ay,...,x, — ay)

]

Theorem 4.12 (Hilbert Basis Thm). Let A be a Noetherian ring, then the polynomial ring A[X]

is Noetherian, more generally, so does A[[X]].

Corollary 4.13. Given an affine algebraic set V' C A}, then 3fi, ..., f, € k[zy, ..., x,] such that
V =2Z(f1,..., [+), i.e. V is the intersection of finitely many hypersurfaces!

4.4 §D. Hilbert Nullstellensatz

{affine algebraic sets} = {ideals of k[z1, ..., x,]}
Vi I(V)
Z(J)« J
V=ZIV))
J C I(V(J))

Here is a proposition from [AM94] .

Proposition 4.14 (JAM94].prop.7.9). k = a field, R = finitely generated k-algebra.
If R is a field, then R is a finite extension of k. In particular, if k is algebraically closed, then
R =k.

Theorem 4.15 (Hilbert Nullstellensatz). k = algebraic closed field (e.g. C,Q).
= an ideal of k[x1, ..., x,], then 1(Z(J)) =/J.

Example 4.16. n=1, k=R, J = (2> + 1) C R[z], then Z(J) = &, but 1 ¢ /(22 +1).

18



Corollary 4.17. If k is algebracially closed, then there is a one to one correspindence between

affine algebraic sets in A} and radical ideals of k[zy, ..., x,]

{affine algebraic sets in A} } «— {radical ideals in k[zq, ..., 2]}
Vi I(V)
Z(J)« J

See V.= I(V) — Z(I(V)) = V, see I(V) is a radical by Hilbert(if f vanishes on V, then
fr e I(V) for some ) and J + Z(J) — I(Z(J)) = v/J = J, hence bijection.

Corollary 4.18 (Weak form). If k is algebraically closed, then I contains 1 <= {f;} the

generators of I have no common zeros.

5 Lecture 5.

22/9/14.
eRecall:

(1) Affine algebraic set.
(2) Zariski topology.
(3) Zariski topology on V.

(4) Hilbert Nullstellensatz.

[II. Affine Algebraic Variety

An affine algebra variety is a locally ringed space (V,Oy) where Let V be an affine algebraic
setwith Zariski topology on it, Oy = sheaf of regular functions.

In this chapter, we aim to define the regular functions on open subsets of V.
1. In differential geometry, we consider C'**° functions.
2. In complex geometry, we consider holomorphic functions.

3. In algebraic geometry, we consider functions defined by polynomials.

5.1 §A. Regular Functions

Let V' C A} be an affine algebraic set.
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Definition 5.1 (Coordinate ring of V).

A(WV):={f:V = k|3F € kla, ..., x,] such that F [y= f}
= {F € k[%l,...,l'n]/ N}

Where F' ~ F' <= F |y=F' |y<= F — F' € I(V), hence A(V) = k[xy,...,x,]/1(V). A(V) is

called the coordinate ring of V.
e Basic facts of Zariski topology on V.
(1) Given f € A(V), D(f) ={x €V | f(x) # 0} is open in V (just take f to F', D(F)NV).

(2) Given an open U C V, then 3fy,...f, € A(V) such that U = U, D(f;). In particular,
{D(fi)} f € A(V) form a base of the Zariski topology on V. Similiar proof like above one.

Remark 5.2. We call U quasi-affine.

eAssume we have defined Oy, then we want:

(1) Global: A(V) C Oy (V).

(2) Local: on D(f), where f € A(V), Oy(D(f)) = {fin :D(f) = k|né€Zs,g¢€ A(V)}, see

its elements are k-valued functions.
Now, we come to the sheaf of regular functions.

Definition 5.3 (1st. Regular functions on subsets). Let U C V' be an open subset,

Oy(U) := {s U — k“such that U = U_, D(f;), fi € A(V), s |pis)= J‘gﬁl € OV(D(f,))}

where g; € A(V) and n; € Z>, and by Hilbert basis theorem, we can find a finite open cover of
U.

Example 5.4.
(1) V = {x129 — 2324 = 0} C A}

2 k=R V=A,g=2>+1=D(f) =V = % e I'(V,0v) = A(V) C T'(V,Oy)(since R is

not algebraic closed).

Before we introduce the 2nd definiton of sheaf of regular functions, let’s recall the sheafification

of a presheaf.
1) First, we define .%, =regular functions in a small neighborhoodof z.

2) Second, we define .# (V') =gluing compatible local functions of .%, Vzx € U.
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Definition 5.5 (Regular functions at a point). Vo € V' C A}, we define

o

Where 4 ~ % if 3f" € A(V), z € D(f") < f"(x) # 0, such that

f.g € AVY, f(x) # o} [~

/

_ 9

7l
flogmn ff
Which is equivalent to f”(gf" — fg’') = 0 in A(V')(see we can shrink D(f”) small enough to be

contained in D(f), taking intersection is enough)

D(f")

Proposition 5.6. there exists an isomorphism of rings Ov,, = A(V)y,, [$] = [4], where p, =

{f e A(V) | f(x) =0}

Definition 5.7 (2nd. Regular functions on general open subsets). U C V.

Oy(U) = {s U — H Ovz|S|pipy = % Vo € U, for some f,g € A(V),xz € D(f) CUn € Z>0}
zeX

Proposition 5.8 (Proterties of Oy).

(1) Oy is a sheaf of rings on V.

(2) Ovz = A(V)y,

(3) If k = k, then Oy (D(f)) = A(V)y, it is exactly the local picture we want!

Remark 5.9. £k =R,

1
2+ 1

§= = OA%(M)
¢ A(AL) = k[z]/(0) = k[x], recall I(A;) = (0)

Remark 5.10. (3) needs a long and maybe tedious proof you can find it in [Har77] , but it is

worth a try, since it is a basic trick in algebraic geometry.

5.2 §B. Affine Algebraic Variety

Definition 5.11. A locally ringed space (X, Oy), where Oy is the sheaf of k-valued functions,
is called an affine algebraic varieties if there exists an affine algebraic setV and a homeomor-
phism f : X — V such that (f, f#) : (X,0x) — (V,Oy) is an isomorphism of locally ringed

spaces, where

FOv(U) = £.0x(U) = Ox(f7(U)) U CV open

s—sof
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Remark 5.12.

(1) Homyy,,(X,Y) = morphisms of locally ringed space where (X, Ox), (Y, Oy) are affine alge-

braic varieties.

(2) The definition of affine algebraic variety is intrinsic, while that of an affine algebraic set is
NOT (depends on the embedding into A}).

Proposition 5.13. Let V' C A} be an affine algebraic set, f € A(V), see (D(f),Ov |p(p)) is
also an affine algebraic variety, since Oy (D(f)) = i.Oy, where i : D(f) — V.

Example 5.14. V = AL f =X, D(X) = A\ {(0)}, V' ={XY =1}, p(z,y) =z = p(V') =
D(X)(bijection).

Define @ : A\ V(F) — A by (21, ..., 20) <xlwﬂ, -——i——7>.

Define @1 : AP — A by (21, .oy Ty Trg1) H (@1, .y 7)), X = ®(V) is an affine algebraic setin
AZH(V(F(xl, ey Ty )Tpg1 — 1)).

Exercise 5.15. ¢ : D(f) =V N D(F) — X is an isomorphism, pullback of a regular function

is still a regular function.

Corollary 5.16. Any open subset of an affine algebraic varietyis covered by open subsets which

are affine algebraic varieties.
Remark 5.17. Affine algebraic variety is the local model in algebraic geometry.

Proposition 5.18. Let (X, Ox), (Y, Oy) be affine algebraic varieties, then there exists one-to-

one Correspondence.
Homy ¢, (X, Y) < Homy.y (D(Y, Oy), (X, Ox))

Corollary 5.19. If k& = k. Cat{affine algebraic variety} ~ Cat{reduced finitely generated
k-algebra}.

Example 5.20 (Bijection # isomorphism). f: AL — AL by z — 23 is an bijection.
f7 k[2]:0n1 0 = Ont o = k[z], is 23 is not an isomorphism of local rings. Hence f is not
an isomorphism.

6 Lecture 6.

22/9/19.

e: compare two definitions of affine algebraic varieties.
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Definition 6.1 (1st given in the course). A locally ringed space (X, Ox) with Ox a sheaf of
k-valued functions(Ox(U) C {s: U — k} U C X open) is called an affine algebraic variety if
A(V,Oy) with V an affine algebraic set, Oy the sheaf of regular functions on V', 3f : X — V
such that

(a) f is a homeomorphism.

(b) YU C V open, fii : Oy(U) = Ox(f*(U)) with s — so f, so k-valued function on f~1(U),
(f, f7) : (X,0x) — (V,Oy) is an isomorphism of locally ringed space.

Remark 6.2. See that so f may not in Ox(f~}(U)), but we require it belongs to it.

Definition 6.3 (2nd). A locally ringed space (X, Ox) is called an affine algebraic variety, if
there exists (V,Oy) with V an affine algebraic set, Oy sheaf of regular functions, such that

there exists (f, f#) : (X,Ox) =~ (Y, Oy) an isomorphism of locally ringed space.

Question 6.4. Where is the difference?

(1) In Def 1st, we require Ox is a sheaf of k-valued functions, but f# is induced by f, not a

priori given in definition.

(2) In Def 2nd, a priori Ox may not be a sheaf of k-valued functions and f# is a priori given

in the definition.

However, we will show that they are equivalent! Def 1.<=Def 2.

Recall 6.5 (Locally ringed space).

(X, Ox) = a locally ringed space
= X topological space + Oy sheaf of rings + Ox , local ring
Where Ox . /m, is a field, called the residue field, denoted x(x).
vV V C X open, Ox(U) C {S:U—>]_[

vt [,ev = Huep #(2) which induces:

wev Oxa | Vo €U, s(x) € OX,I}, see we have a natural

{’5: U— []Oxe— [[ #(2) | Ve € U5(z) € ﬁ(a;)}

zeU zelU

Remark 6.6. (1) x(x) is independent of x.

Ox s > Ox o = k(z)/my

ff]\: :T}}

Ov o) — Ovpe)/ My = &(f(z)) >k
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The right vertical isomorphism is induced by f# is a local homomorphism.

(2) ¢y is injective, V U C X open:

s Ox(U) — 5 (U = 1Ly w(2)}
L ]
5 Ov(f(U)) —L2— {F(U) = TLyeswn 50}

If 5 € ker g, then there exists 3 € Oy (f(U)) such that f;f(3) = s, hence ©w)(5) = O(see
the right vertical arrow is natural), by axiom of sheaf, s = 0, hence s = 0.
Hence, if (X,Ox) is an affine algebraic varietyin the sense of Def 2. then Ox is naturally a

sheaf of k-valued functions on V', and (X, Ox) is an affine algebraic varietyin the sense of Def 1.

‘affine algebraic variety’ in Algebraic Geometry ~ ‘open ball” in differential /complex geometry.
Open subsets of affine algebraic variety= union of standard open subsets D(f), f € T'(X, Ox),
and (D(f),Ox |p(y is an affine algebraic variety.

[V. Basic Properties of Affine Algebraic Varieties

6.1 S§A. Irreducibility

Example 6.7. V = {XY = 0} C A}, we have X-axis(Y = 0) and Y-axis(X = 0), hence
V=V (X)UV(Y), we decompose the variety into two varieties!

Definition 6.8 (Irreducibility). Let X be a topological space, then the followings are equivalent:
(a) If X = FUG, F,G are closed subsets of X then either X = F or X = G.

(b) HUNV =@ in X, where U,V are open then either U = & or V = &.

(c) If U C X is a nonempty open subset of X, then U = X (open is dense).

Example 6.9.

(1) R with Euclidean topology is reducible(minus a open ball then cups the closure of the open
ball).

(2) If X is Hausdorff, then only singleton space is irreducible, since for every pair of points, we
can give them disjoint open neighborhoods, hence opens are not dense, and we will see later

the dimension of Hausdorff space is 0 due to this property.

Proposition 6.10.
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(1) V C A} an affine algebraic set, then

V is irreducible <= I(V) is prime

<= A(V) is an integral domain

(2) V is an affine algebraic variety then V' is irreducible <= I'(V, Oy ) is an integral domian.
Recall that if k = k, then I'(V,Oy) = A(V), if not, then they are different(we may have

denominator is a polynomial).
Corollary 6.11. If k is infinite, then A} is irreducible since I(A}) = (0).

Remark 6.12. If k is finite, A} = union of finite points, and actually every point is closed,

hence not irreducible.
Question 6.13. So, can we decompose X into union of irreducible components?

Definition 6.14 (Noetherian Space). A topological space X is called Noetherian if it satisfies
ACC for open subsets which is equivalent to DCC' on closed subsets.

Example 6.15. By Hilbert basis theorem, an affine algebraic set is Noetherian.

Theorem 6.16. If X is Noetherian, then X has a unique decomposition into union of irreducible

components, X = UU; with U; irreducible and U; C U; for any 1, j.

7 Lecture 7.

22/9/23.

eFrom now on, we will always assume k = k, chark = 0. e.g. C(uncountable), Q(countable).

7.1 §B. Dimension

eComparing with differential/complex geometry, then main difficulty to define the dimension of
an affine algebraic variety is that in general, it is NOT an open subset of an affine space A} (see
in differential /complex geometry just use the dimension of local open to define dimension).

We will give three methods to define ‘dimension’ which are all interesting.

(1) Topological dimension

Definition 7.1. Let X be a topological space. We define the dimension of X, denoted by
dim(X), to be the supremum of all integers n such that there exists a chain of distinct irreducible

closed subsets
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Remark 7.2. (1) We can think dim(X) as a definition "from small to large”, like

point C curve C surface C --- C X

Like
picture

(2) This definition is very different from given in differential /complex geometry. Actually if X
is Hausdorff, then the only irreducible component is singleton, see a Hausdorff space X is

irreducible if and only if X is a singleton.
(2) Krull dimension

Recall 7.3 (Krull dimension of a ring). Let A be a ring, p € Spec A, then we define the height
of p denoted by ht p.

htp = sup {n € ano

Ipo S ---Cp,=p Pp;prime ideals}
Then the Krull dimension of A is defined as dimg (A) = suppegpec 4 ht(p).

Corollary 7.4. Let V be an affine algebraic variety. A =T(V,0v) = A(V), V C AL, A(V) =
Ko, 2]/ 1(V)

{prime ideals in A(V)} ELN {irreducible closed subsets in V'}

p—Vip)
U~ I(U)

Hence

oG Chi=p Yo SO Y,
Where p; «— Y,,_;, is one to one reverse ordering.

Proposition 7.5. Let V' be an affine algebraic variety. Then dimV = dimg I'(V, Oy ), where

dim V' is topological dimension, dimg I'(V, Oy ) is Krull dimension.

(3) Transcendence degree of field of rational functions

Fact 7.6. An affine algebraic variety is irreducible <= I'(V, Oy) is an integral domain.
Example 7.7. V = (xy) is not irreducible by A(V) = k[x,y|/(zy).

Definition 7.8 (Field of rational functions). Let V' be an irreducible affine algebraic variety.
Then the field of rational functions K (V') of V is Frac(A(V)).

Example 7.9. V = (2122 — 2374) C A}, hence Tt = 24 in K(V).
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Theorem 7.10 ([AM94] Chapter 11). If k = k, A a domain, finitely generated k-algebra. Then
dimg (A) = tr. deg, (Frac(A)).

Corollary 7.11. Let V be an irreducible affine algebraic variety. Then dim(V') = tr. deg, (K (V))
Example 7.12. dim(A}) = tr.deg,(k(z1, ..., 2,)) = n., which coincides with our intuition.

Theorem 7.13 (Noether’s normalization lemma). Let R be a domain, finitely generated k-
algebra. If n = tr.deg,(R), then there exists xy, ..., x, € R algebraically independent over k such
that R is integrally dependent over the subring klxy,...,z,] C R.

Corollary 7.14. Let V be an irreducible affine algebraic variety of dimension n, then there

exists a dominant morphism ¢ : V' — A} which means (V') = A}.

Proof. Since dimV' = n we have tr.deg, I'(V, Oy) = n, hence k[xy,...,z,] — T'(V,Oy) which

induces ¢ : V' — A}, see the lemma below. ]
Lemma 7.15. If ['(U, Oy) — I'(V, Oy ), then it induces ¢ : V' — U which is dominant.
4) Local dimension

Definition 7.16. Let V' be an affine algebraic variety, p € V be a point. Then the local dimension

dim, V' of V' at p is defined by the Krull dimension of its local ring, dimg Oy, = dimg A(V ),
where m, = {f e '(V,Oy) | f(p) = 0}.

Proposition 7.17. dim, V' = sup {n € Zn>0

Hpt Y1 C---CY, CV Y irreducible closed}(see

singleton is closed.).
Fact 7.18. k = k, let V be affine algebraic variety. Then there exists 1:1 correspondence:
{points in V} +— {maximal ideals in I'(V, Oy )}
p—=my,

See C case, maximal ideals correpond to points.

It is easy to see that prime ideals in Oy, <— prime ideals contained in m,,, see
PoC - CPn SOy pg C---Cp, Cm, CT(V,Oy)
Where are both chain of prime ideals.
Proposition 7.19. dimg Oy, = ht(m,).
Proof.
dim, V' = dimg Oy, = tr. deg;, (Frac(Oy,))
VIt deg, (K (V)
=dimV
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Remark 7.20. If V' is NOT irreducible, then the general dim, V' # dim V. For example, Let V'
be line U pt C A7, then dim(V) =11ie. {p'} €I, BUT dim,V =0

eDepth: from large to small

Recall Top, Krull from small to large, like pt C curve C surface C - --

Theorem 7.21 (Krull’s Hauptidealsatz). If A is Noetherian ring, f € A neither zero divisor
nor unit, then dimg A/(f) = dimg(A) — 1 which is equivalent to every minimal prime ideal

containing (f) has height 1.

Example 7.22. Let V be an affine algebraic variety, p € V, A = Oy, f € A. If f is not a zero
diviosr, then f|y, # 0, where V =1V, U---UV, and V; is an irreducible component containing p.
Otherwise, if f is not a unit, then p € V(f). Above data implies that dim V' (f) = dim V' — 1.

Corollary 7.23. Let V be an affine algebraic variety, if f € I'(V, Oy ) is neither a zero divisor
nor a unit, then dim V(f) =dimV — 1.

eRecall: Regular sequence and depth.
Let A be a ring, M an A-module.

(1) A sequence xy,...,x, of elements in A is called regular for M if x; is not zero divisor for

M/(xq,...,x;1)M and x; is not a zero divisor for M.

(2) If Ais alocal ring with maxiaml m, then the depth of M is the maxiaml length of a regular

sequence 1, ..., T, € m for m.

Geometrically, if V' is an irreducible affine algebraic variety, p € V, A = Ovy,, fi1,...,fr €
m, C Oy, imagine this process(quotient new f;) as cut by new hypersurface (f;), hence the

‘dimension’ decreases. pic

Example 7.24.

(1) z1,...,z, form a regular sequence of k[z1, ..., z,].

(2) z1,...,z, form a regular sequence of k[z1, ..., ] m,, local ring at (0, ...,0) € A].

Remark 7.25. Let (A, m) be a local ring, then depth(m) or write depth(A4) < dimg A and in

general, it is strict!

Definition 7.26. Let (A, m) be a local Noetherian ring, A is called Cohen-Macauly if depth A =
dimK A.

Definition 7.27. An irreducible affine algebraic variety is called Cohen-Macauly if all its

local rings are Cohen-Macaulay.
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Definition 7.28 (Complete intersection). An affine algebraic variety V' C A} is called a com-
plete intersection if 3F, ..., F,. € k[xy, ..., x,] such that [(V) = ([, ..., F,) and r =n—dim V.

Example 7.29.

(1) A complete intersection is Cohen-Macaulay, in particular, if F' is an irreducible separable

polynomial in k[x, ..., z,], then V(F) C A} is Cohen-Macaulay.
(2) All irreducible affine algebraic varieties of dim 1 is Cohen-Macaulay.

Remark 7.30. Just understand the example by realizing complete intersection and depth as

accurate cut!

8 Lecture 8.

8.1 §C. Singularity and Zariski tangent space

Example 8.1. V = V(X3 + Y3 — XY) C A7, then in Euclidean topology, locally at (0,0), we
have V' = ‘cross’ at (0, 0) which is not smooth. V' is NOT a submanifold of A}, i.e. V is singular
at (0,0).

eRecall: Implict function theorem:
Let M =V(f1,..., fr) CR", fiis a C! function.

1= ()
015 ) 1z

Example 8.2. f =z7, V(f) = {(#1,...,x,) | x1 = 0} is a submanifold, but rank J |y (s= 0.
Remark 8.3. The strange phenomenon is due to we take too little functions.

Theorem 8.4 (Implicit function theorem). M is an m-dimensional submanifold of R™

<=:Vx € M, there exists x € U, CR", and g1, ..., gs € CH(U,) such that MNU, =V (g1, ..., gs)

d9;
J(gh ...,gs) N (31,’]) 1<§z§5
1<j<n

has rank n —m over M NU,,.

Example 8.5. A2 — AL with (X,Y) — X3+ Y3~ XY = F, J = (3X?—Y,3Y2 — X). See that
J(0,0) = (0,0) with rankg = 0. And J(zo,y0) # (0,0) if and only if (zo,y0) # (0,0). Hence
J(F) has rank 1 over V '\ {(0,0)}. And V' \ {0,0} is a submanifold of A} and (0,0) is a singular
point of V.
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8.1.1 Singular point: non-intrinsic definition

Definition 8.6. V' C A} an affine algebraic variety. Fi,...F,. € k[z1,...,x,] are generators of

I(V). Let p € V be a point, then we call p a non-singular point if J at p

OF;
&rj 1<i<r
1<j<n

1=

has rank n — m, where m = dim, V', otherwise p is called singular.

Recall 8.7 (Derivative). In geberal, we can NOT define the derivative of a function as that done

in calculous, since there is no natural distance function on k. However we can do it formally.
Example 8.8. (1) V =V (X?+Y? - XY) C AZ. (0,0) is the only singular point.

(2) V=V(Y?— X3) C A2 (0,0) is the only singular point.

8.1.2 Tangent space: nonintrisic definition

tangent space of V' at p = linear approximation of V' at p.
= zeros of linear approximation of defining equations of V" at p.
= zeros of linear parts of all F' € I(V) at p.

= zeros of linear parts of generators of I(V') at p.

F € k[zy,...,x,], p € A} a point with F(p) = 0, then the linear part D, F is defined as:

" OF
i=1 ¢

it is just Taylor expansion of order 1, the linear approximation!

Example 8.9. V =V (X?+Y? - XY) C A namely F = X®+Y?— XY hence g—)F( =3X?2-Y,

g—}F, =3Y? - X. Dol =0, (0,0) is the singular point, we draw the tangent space at (%, %),

where D1 1, = H(X =) + (Y - 1)
(272)

4 2 4 2

Definition 8.10 (Tangent space of V' at p). Let V' C A} be an affine algebraic variety, p € V' a
point, Fi, ..., F,. € k[xy,...,z,] are generators of (V). Then the tangent space T,V of V at p

is defined as
TV :=V {DPF‘F c1(v)}

= V{me

1<i< 7’} C A
T,V is actually a vector space passing through p(since p always satisfies the equation).
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Fact 8.11. T,V ~ T,V — p is a linear subspace in A}.

Proposition 8.12 (Criterion for singularity). V' C A} an affine algebraic variety, p € V is a

point. Then V' is non-singular at p if and only if
dim 7,V = dimy(7,,V — p) = dim,, V'

see dim 7,V = dimy(7,V — p), the left one is the dimension of algebraic variety, the right one is

the dimension of vector space.

Proof. p € V non-singular <= rank (%
I(V), then

T,V —p:= {(931, ey X)) € A}
i=1

L (7)
— ker (A;; (=) A;)

dim(7, — p) equals to dim, V' <= rank <g§(p)> =n—dim,V O

Remark 8.13. In general, we always have dim, V' < dim 7, V.

Definition 8.14 (Tangent bundle). Let V' C A} be an affine algebraic variety, define:

TE = {(p,v) € A} x A} | p € V,v € T,V — p}

|

V where 7 is the first projection

Remark 8.15. For any p € V, 77 !(p) = T,V — p is a k-vector space of dimension dim 7,V

which coincides with the version of algebraic topology.
Proposition 8.16. TZ% C A} x A7 2 A2 is an affine algebraic set.

Proof. Let (21, ..., Ty : Y1, ..., Yn) be the coordinate of AZ", FY, ..., F,. € k[xy, ..., z,] generate I(V).
Define

Z oz, y] € k[T, oo, Tnj Yty v Yn)
Check that TZ" = V(Fy, ..., Fy; Fi,..,F)cC A" O

Definition 8.17. V' C A7, an affine algebraic varietysay V' is non-singular if ' is non-singular

at any point.
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9 Lecture 9.

22/9/28.

9.0.1 Zariski tangent space: intrinsic definition
V' C A} as an affine algebraic variety, p € V' a point, A(V) = k[zy, ..., x,]/1(V) coordinate ring,
={f € AV) | f(p) = 0} is a maximal ideal. Vf € p, choose F' € k[xy,...,x,] such that

f =F |y, we define a linear map:
df T,V —p C A = k" 25

v=(vg, ) Y 3o, (p)vi

where A =

OF (1)

dzxn

Lemma 9.1. d,f is well-defined.

Proof. Choose another G such that f = G |y, which means F' — G € I(V).

“I(F -G
E:lﬁz—%meo Y(vr,..,v0) €T,V —p
0

=1

Hence d, f is well-defined.

Hence we obtain a k-linear map:
p at Homy(T,V — p, k)
f=dyf
Proposition 9.2. The k-linear map d, induces a k-linear isomorphism of k-vector space
p/p? 2 Homy(T,,V — p, k)

Proof. Step 1. d, is surjective. Choose an embedding Homy(7,V — p, k) — Homy (k" k) just

like basis (€1, ..., €m; €mi1; .-, €n). Given L € Homy(T,V — p, k)
&1
k" — k

Cn

define F' = ZCZ(% —pi) € k[xy, ..z, f=F|v.
i=1

C1
=d,f = ( : ) € Homy(T,,V — p, k)

Cn
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Step 2. ker(d,) = p*. Without loss of generality, we may assume p is the origin of A}, choose
F € klxy,...,x,), f = F |y such that d,f =0 i.e.

— OF
Z —U; = 0 V(Ul, ...,Un> < TpV

i=1 z;

As a consequence, we obtain an isomorphism of k-vector space:
d
p/p? = Homy(T,V, k)
Now we come to the intrinsic definition.

Definition 9.3 (Zariski tangent space: intrisnic definition). V' an affine algebraic variety, A =

I'(V,Ov), p € V a point, p is the ideal of p at A, m, the maximal ideal of Oy,,.

(1) The cotangent space €y, of V at p is defined as
Qu, == p/p”> =m,/m’  as k-vector space
(2) The Zariski tangent space T,V of V at p is defined as
TV = (p/p?)" = (my/m])"
Corollary 9.4. V is an affine algebraic variety, p € V, V is non-singular at p if and only if
dimy m,/m? = dim,, V.
9.0.2 Regular local ring

Let (A, m) be a Noetherian local ring, k = A/m be the residue field, then A is called a regular
local ring if dim, m/m? = dimy A, where the left one is dimension of k-vector space, the right

one is Krull dimension.
Proposition 9.5. Let V' be an affine algebraic variety.

(1) A point p € V is non-singular <= Oy, is a regular local ring.
(2) A point p € V' is non-singular = V' is at p.
(3) Viing is closed.

(4) V' \ Viing is a dense open(only Char k = 0!)
Proof. (1) By definition.

(2) Pure commutative algebra.
(3) By definition and rank of Jacobi matrix.

(4) The existence of non-singular point is NOT trivial. See [[Har77] , Chapter I, Thm 5.3].
O]
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9.1 §D. Normality

() In general, the singular locus Vi, of an affine algebraic variety may be very large like

condimension 1!

Example 9.6. V =V (Y? — X3) C A7, See that dimV =1, Vi, = {(0,0)}, dim Vg = 0. You

may think a singleton is small, but in topology, it is big in this case.
Recall 9.7. Let B be a subring of A.

(1) An element b € B is integral over A if it satisfies an equation

"t =0 €A

(2) B is integral over A if any element b € B is integral over A.

(3) Assume further that A is an integral domain. Then A is integrally closed if for any element

b € K = Frac(A) is integral over A is in A.

Definition 9.8 (Normal variety). Let V be an affine algebraic variety. Then V' is called normal

if Oy, is integrally closed(hence domain) Vp € V.
Remark 9.9. (1) V is normal = V is locally irreducible, i.e. Vp € V, Ip € U Opgen V such that
U is irreducible, which means local is not a ‘cross’.

Picture

(2) In other words, irreducible components are disjoint.
picture

(3) If V' is non-singular, then X is normal[regular local ring is normal/integrally closed. Mat-
sumura Prop.19.4.].

Example 9.10.

V =V(Y? - X3) C A} is not normal at (0,0). See Frac(Oy,) 2 (%)2 =X €0y, =>Lis

integral over Oy, but £ ¢ Oy,.

Remark 9.11. See the example above, Oy, is actually difficult to compute in general, but in
this case, singular point p is (0,0) which corresponds to (X,Y’), hence Oy, is just Oy, and
Frac(Oy,,) is easy to compute. Actually we can always move the singular point to the origin as

we did in defining tangent space or computing intersection number.

Two important properties of normal varieties
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Theorem 9.12 (Codimension of singular locus is greater than 2). Let V' be an irreducible normal
affine algebraic variety. Then Viyg = {p € V’V is singular at p} has codimension greater than
2. d.e. dimV — dim Vg > 2.

Proof. ]

Proposition 9.13 (Partial converse. Serre). Let V' be an irreducible normal affine algebraic

variety, such that codimy Vine > 2. If V' is Cohen-Macaulay, then V' is normal.
Corollary 9.14. An one-dimensional irreducible normal algebraic variety is non-singular.

Recall 9.15 (Hartogs’s extension theorem). Let V' be an irreducible normal affine algebraic
variety. Let U C V be an open subset such that dimy (V' \ U) > 2. Then I'(V, Oy ) — I'(U, Oy)

is surjective by f +— f |y i.e. regular functions on U extend to V.

Example 9.16. f : C?\ {(0,0)} — C holomorphic, then f can be extended to a global holo-

morphic function ]?: C?—C.

Recall 9.17 ([Mus]. Theorem 11.5.). Let A be a normal(A,, is integrally closed over any
m € MaxSpec A) Noetherian integral domain, then

A= ﬂ A, C Frac A

ht p=1
pESpec A

recall that normality is a local property, hence we only need to consider m € MaxSpec A.

Theorem 9.18 (Algebraic Hartog’s Theorem). Let V' be an irreducible normal affine algebraic
variety, and U C V' be an open subset such that Codim(V \U) > 2. Then I'(V,Oy) — MOy (U)

is surjective by f v f|y i.e. reqular functions on U can extend to V.

Proof. Choose s € I'(U,Op), VY C X an irreducible subvariety of codimension 1, then Y N
U # @. Hence 3f,g € I'(V,0Oy) such that s = § and gly # 0, and thus s € Ajy), where
IY)={f eT(V,Op)|fy =0} CI'(V,0Oy) is a prime ideal with height 1.

{irreducible closed subset of codimension 1 in V'} JELN {prime ideals of height 1 in T'(V, Oy )}
Mo o A C Frac(A) = s € I'(V, Oy), hence A =T(V,Oy). O

9.1.1 Normalization of an affine algebraic variety

Theorem 9.19 (Normalization). Let V' be an irreducible affine algebraic variety. Then there

exists an irreducible affine algebraic variety V™" with a morphism n : V™" — V such that

(1) V™ is normal.
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(2) n* : T(V,Oy) — T(V"", Oynor) is integrally closed, i.e. T(V"" Oyuor) is integrally over
['(V,0y). We calln: V™" — V the normalization of V.

Example 9.20. V = V(Y? — X3) C A, Then the normalization of V is

Ve V(T - W) SV
(T, W) = (T, TW)

see V" >~ AL

10 Lecture 10.
22/10/10.

Theorem 10.1 (Normalization). let V' be an irreducible affine algebraic variety. Then there

exists an irreducible affine algebraic variety V™" with a morphism
n: V"=V

such that

(1) V™ 4s a normal variety.

(2) ni - T(V,0p) = T(V"" Oynor) induces an isomorphism of fields

Frac(I'(V,T(V, Oy))) ~ L(V"™", Oynor)

(3) T(V™" Oynor) is a finite I'(V, Oy)-module.

Example 10.2. V = V(Y% — X3) C A?. The normalization of V is V" = V(T — W?) C A?
with

n: Ve sV

(T, W) — (T, TW)
Remark 10.3.
(a) (2) means n is birational, i.e. 3U C V™" and U’ C V open subsets such that
nly : U —=U'
is an isomorphism.

(b) (3) means that n is finite which means fibres of n is finite(but not necessary conversely).
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Proof. Take A = integral closure of I'(V, Oy ), by Noetherian normalization theorem, there exists
a subring
B =k[Ty,..,T,,) CT'(V,0y)

such that I'(V, Oy ) is integral over B. Then
Diagram
(1) A is the integral closure of B in K (V') by transitivity of integral.

(2) B is integrally closed in Frac(B). Since T'(A",Opr) = B, A} is nonsigular hence A} is
normal which means B is integrally closed. =: A is a finite B-module [AM. Prop.5.17.].
=: A is a finite I'(V, Oy )-module. =-: A is a finitely generated k-algebra and an integral
domain, so

A~ k[Yy, . YN/

[ is a prime ideal. We take V™" = V(I) C AY and n : V™" — V is induced by I'(V, Oy) <
F(VTLOT" Ovnor) — A

]

Recall 10.4. Let A — B be Noetherian rings such that B is a finite A-module. Then for any
maximal ideal m of A, m - B C m’ for some maximal ideal m" C B. Hence n : V" — V is

surjective.

Definition 10.5. Let V' be an affine algebraic variety(maybe reducible.). Then the normal-

ization of V is the disjoint union of the normalization of each irreducible components.

Example 10.6. If we have V = (XY) C A}, we know the normalization of a single line is
itself, hence the normalization of V' is just the disjoint union of two lines, we ‘disjoint’ them like

blow-up.

V. General Algebraic Varieties

Notation 10.7.

(1) Differential manifold = a Hausdorff locally ringed space (X, Ox) such that V = € X, there
exists a neighborhood U, of z such that (U,, Ox|y,) ~ (B(O,r), OB(O,T))'

(2) We hope to define a general algebraci variety to be a ‘Hausdorff” locally ringed space such
that V = € X there exists a neighborhood U, of x such that (U,, Ox|y,) = affine algebraic
variety. BUT: Zariski topology is never Hausdorff.
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10.1 §A. Prevarieties

Definition 10.8 (Prevariety). A prevariety over k is a locally ringed space (X, Ox) such that
(1) X is quasi-compact.

(2) ¥V x € X, there exists U, open neighborhood of x such that (U,,Ox|y,) =~ some affine

algebraic variety.

Definition 10.9. Let (X, Ox) be a prevariety, U C X an open subset. Then (U, Ox|y) is a

prevariety, called an open subvariety of X.

Remark 10.10. Then X = U! ,X; where X; = affine algebraic variety and U; = U N X is a

finite union of affine open subsets of X;.
An open subset of an affine algebraic variety is a prevariety called quasi-affine variety.

Example 10.11. Quasi-affine variety maybe not affine!
U= A\ {(0,0)} is quasi-affine, but not affine.
Consider
i T(A}, Oge) — T(U, Oy)

which is induced by inclusion. By algebraic Hartog’s theorem, i# is an isomorphism(since a
point has codimension 2 in this plane case.). But it is absurd since affine variety is one to one
correspongding to its global section. What’s more, we can compute its cohomology and it does

not vanish in higher dimensional.

Lemma 10.12. A prevariety is Noetherian. In particular, it admits a unique decomposition

into irreducible components.

Proof. Our whole space is X, assume Y; D Y, D --- is a sequence of closed subsets. Let
U=UX(X\Y;) C X, each XY, is open, U is quasi-compact. Then, there there exists m > 1
such that U = U2 (X \ Y;) = Y, =Y, for all m > i. O

Definition 10.13 (Closed subprevariety). (X, Ox) is a prevariety, i : Z — X is a proper closed
subset. Then (Z,0y) is a prevariety called a closed subprevariety if I'(U, Opy) =

{f:U — K :Vz € u, 3 open neighborhood U, and g € I'(U,,, Ox) such that f|y,~rv = glv.cv}

11 Lecture 11.

22/10/12.
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Recall 11.1 (Locally closed subset). X is a topological space, Z C X is locally closed if
Z =UNY where U C X open and Y C X closed.

Definition 11.2 (Subvariety). Let X be a prevariety, Z = U NY be a locally closed subset
with structure sheaf Oz, a closed subvariety of U is called a subprevariety of X, i.e. a closed

in open or an open in closed, lol.
Remark 11.3 (%). Let X be a prevariety. Then
(1) U — X open, Oy =i 'Ox.

(2) Z < X closed, Oz # i~ 'Ox.

11.1 §B. Separateness and Varieties

Example 11.4. U; = (A, Op), Us = (&, Op).
Define X = (Uy | |U3)/ ~, where x ~ y <= x =y if z,y # 0, just glue to an affine line with

double original point.
Definition 11.5 (separateness). Let X be a prevariety.

(1) We say that X is separate if all prevarieties Y and all morphisms

/
Yy~ X
~_
7
the set {y € Y : f(y) = g(y)} is closed in Y.
(2) A variety is a separate prevariety.
Back to our previous example: Take
A
Y X
~_ 7

with f mapping to U; indentically and g mapping to Us indentically.
Then {z € A : f(2) = g(2)} = AL\ {(0,0)} is not a closed subset of Y, hence X is not separate.

Remark 11.6 (Geometric meaning of separateness = limit is unique!). Assume X is NOT

separate, then there exists Y prevariety with morphisms

such that S .= {y €Y : f(y) = g(y)} is not closed, hence F{y,} C S such that y. — y ¢ S,
which means f(y) # g(y) but {zx = f(yr) = g(yr)} = f(y) and g(y).
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11.2 §C. Products of Prevarieties: A Criterion for Separateness

(a) Product of Affine Algebraic Varieties
Let X C A}, Y C A be two irreducible affine varieties. The product of X and Y, denoted by

X x Y is an irreducible affine algebraic variety:
(1) Asaset, X xY ={(z,y) e A} x AP =N 2€ X, yeY}.

(2) The Zariski topology of X x Y is the subspace topology induced from A7"*"(not the product
topology of A} and A}".).

(3) The structure sheaf Oxyy = structure sheaf of X x Y as an affine algebraic set in AZ”F”.

Lemma 11.7. X x Y C A" is an affine algebraic set, it is obvious since we can embed their

functions into higher-dimensional space.
Lemma 11.8. I'(X x Y, Oxyy) ~I'(X,O0x) @ I'(Y, Oy).

Proof.

KX, o Xo] K[ Y

(Fi,...F,) " (G, ...G,)

CRX e X Vi, V)
(Fl,...,Fr;Gl,...,GS)

['(X,0x)@T(Y,0y) =

recall that the tensor product of two domains is still a domain, see [[£S75]. Chapter 3. §15]. [

This tells us that X x Y can be defined intrinsically!

(b) Product of Prevarieties

Let X = UL, X;, Y = U7, Y; with X;, Y] be irreducible open affine algebraic sets.
Definition 11.9. The product of X and Y, denoted by X x Y, is a prevariety such that

(1) X xY ={(z,y):x€ X, ye Y} as a set.
= X xY =J;; Xi x Y as a set.

(2) The Zariski topology on X X Y is the topology induced by the Zariski topology on X; x Y

i.e.
(1) X; x Yj is open, Vi, j

UCX XY open <
(2) UN(X; xY;)isopenin X; x Y; Vi, j

(3) The structure sheaf Oxy is the unique sheaf on X x Y such thatOx.y|x,xy; = Ox;xy;-

Remark 11.10. Since X = U™, X;, we can refine it into a ‘smaller’ cover, just refine each affine

open to an affine open cover by D(f).
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Lemma 11.11. Let X and Y be two irreducible affine algebraic varieties. Take 0 # f €
['(X,0x) and 0 # g € I'(Y, Oy). Then

OXXYManp@)E‘ODUVD@>

see that D(f) and D(g) are irreducible affine algebraic varieties since they are localization of

domains.
Proof. D(f) x D(g) = D(fg) C X xY. O
Now (X; x Y;) N (X xY])=UC X xY.

Question 11.12. OXiXYj|U - OXQXyJ,

U

We make refinement: X; N X; = UX]" with X" are all affine. Then

OXiij quXYj” >~ OX{XY']/|XZ(/XYJ{/

hence we localize to an affine open cover which gives a unique glue.

(2) Criterion for Seperatedness

Proposition 11.13. Let X be a prevariety. Consider the diagonal morphism

X3 XxX

x> (z,1)
then X is separate if and only if A(X) is closed in X x X.

Proof. =:let p;: X x X — X fori=1,2 and A(X) = {(z,z) € X x X : p1(x,x) = pa(x,2)},
hence A(X) is closed since X is separate.

<: assume A(X) is closed, take an arbitray prevariety Y with f,g:Y — X.

S:={yeY:fly) =g}
= dH(AX))

where @ : Y — X x X by y — (f(v), 9(y)) is closed. O

Corollary 11.14. All affine algebraic varieties are separate, moreover affine schemes are sepa-

rate.
Proof. A7 x A = A2 as prevarieties, then
AN =V{X;-Y,:1<i<n}
which is closed. O

41



Corollary 11.15 (Criterion for separateness). Let X be a prevariety. Assume for any z, 2’ € X,
if there there exists an open subset U containing = and 2/, furthermore, U is an affine algebraic

variety. Then X is separate.

Proof. Y a prevariety with f,g:Y — X. Z={y €Y : f(y) = g(y)}. Assume on the contrary
that Z # Z in Y. Let z € Z such thatf(2) # g(2).
Let U be an affine algebraic set of X containing f(z) and g(z) and

V=[U)ug (V)
Consider g|v, flv : V — U, then

lyeV:ifly)=9w)}=2nV

is closed in V since U is separate. But z € {y € V : f(y) = g(y)} = ZNV, a contradiction. [

12 Lecture 12.

22/10/17.

Remark 12.1. In the definition of product of affine algebraic varietiesin the last class, we always
assume that the affine algebraic varietiesare irreducible and choose an irreducible affine open
cover. In general, it is false! For example the ‘corss’ does not have an affine open at the origin.
However, the Irreducibility is only used to ensure the tensor product of integral domians is also

reduced.

Theorem 12.2 ([?] V.§15). Let k =k, chark = 0 and A, B are reduced k-algebra. Then A®; B

is a reduced k-algebra.

12.1 §D. Completeness

Completeness = ‘compactness’, limit of convergent sequence always exists.

When we say ‘variety’, we mean a separate variety.

Definition 12.3 (Complete). Let X be a variety. X is called complete if for any variety Y,

the projection X x Y 5 Y is closed, which means mapping closed subset to closed subset.

Example 12.4. X = V(xvy — 1) C A}, we have natural projection: A7 x AL 2 Al Consider
X'=V(xy—1,z —z) C A} x A; which is a closed subset, but po(X’) = A}, \ {0} is open. Affine
space is never complete since it misses the infinite points, in this case, it miss V(z) and V(y),
you can find them in PZ. An affine algebraic variety is complete if and only if it has only finite
points, hence

A} is complete <= n = 0(A) is singleton)
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Remark 12.5 (Geometric meaning of completeness). Let C' be a curve, o € C, a marked point.
Consider a morphism

fiC\{o} > X

and the graph
I'(f) ={(c, f(¢)) s c € O\ {o}}

—Zar
take the Zariski closure I'(f) . Consider the projection

Cx X2

X is complete = pl(F(f)Z is closed in C.
7

= ()
= o)NT(N " #

ar>
ar> —C

——Zar
see C'\ {o} is contained in I'(f) . In geometry, the limit point is in our closure!
Proposition 12.6 (Basic properties of completeness).

(1) Let f: X — Y be a morphism of varieties. If X is complete, then f(X) is closed and again

complete, closed map and image is complete(like image of compact is compact.).
(2) If X and Y are complete, then so does X x Y.
(3) If X is complete and Y C X is a closed subvariety, then Y is complete.
(4) Affine algebraic variety if complete <= its dimension is 0(hence finite points).
Remark 12.7 (Basic notions for variety). Let X be a variety.
(1) Dimension of X = its topological dimension.
(2) Irreducibility = irreducible in Zariski topology.
(3) A point p in X is nonsingular if Oy, is a regular local ring, hence dimyx Ox, = dim; m,,/ mf).
(4) Zariski tangent space of p € X = (mp /mﬁ)*.
(5) X is normal if Oy, is integrally closed.

Remark 12.8 (Compare compactness and completeness for k = C). Let X be an affine algebraic
variety over k, X = UXj;, each X; is an affine open, so we have X; < A", since A}* has natural
Euclidean topology, hence we can induce Euclidean topology on X;, denoted by X?"(analytic)
which ~» X" with Euclidean topology on X.

Zariski topology on X is complete <= X" is compact in Euclidean.
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12.2 §E. Function Field and Rational Map
(1) Function Field

Definition 12.9 (Function field). Let X be an irreducible affine algebraic variety. Then the
function field K (X) is defined as

K(X)= lim I'(U,Ox)

—
oAUCX

where U is open in X, i.e.
K(X)={(5,U) : s €I'(U,0x), @ #U C X open} | ~

where (s,U) ~ (§,U") <= J@ # W C UNU’, W is open in X such that s|ly = s|w, see

UNU"# @ since X is irreducible. And we denote the equivalence class by (s, U).
Proposition 12.10.

(1) The canonical map I'(U, Ox) — K(X) is an injective homomorphism of rings for any open
U.

(2) For any nonempty open U C X there exists canonical isomorphism of fields
K(U) ~ K(X)
hence we get a criterion of birationalness.
(3) For any = € X, there exists a canonical isomorphism of fields

Frac(Ox,) ~ K(X)

Proof. We just list the canonical morphism, and left the readers to check.

(1) s (s,U).

2) (5,07 > (5, 0.

(3) Ox. — K(X) by (s,U) — (s,U), see it only gives the homomorphism of ‘numerator’, and

easy to generlize to the fraction field.

Remark 12.11.

(1) Morphisms between varieties = morphisms of locally ringed spaces. Then f induces a

morphism of fields.
K(Y)— K(X)
(s,U0) = (so f, f7(V))
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Proposition 12.12. dim; X = tr.deg, K(X). In particular, dimX x Y = dim X + dimY,

where dim; means the topological dimension.

Proof. We claim that for @ # U C X, then dimU = dim, U = dimg Oy, for any € U, where

U is open in X. Let’s prove this claim.

(i)

(2) Rational Map
Definition 12.13 (Rational map). Let (X, Ox) and (Y, Oy) be two varieties, A rational map
f:X---Y

is a morphism f : (U,Ox|y) — (Y, Oy) of varieties, where (U, Ox|y) is an open subvariety of
X.

Example 12.14.

(1) Cremona map

p2 Ly p2
1 1
= (—, —
(21, 22) (x1’$z)

f is well-defined on D(x1x5) and induces an isomorphism
D(z129) ~ D(y1y2)

inverse is given by

11
(y1,92) (a, ;
recall that D(xy) N D(x2) = D(z122).
(2) Projection
I pl
T
(z1,22) — (l,—:)

p is well-defined on D(xs).
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(3) T1T9 — T34
Let X = V(w129 — xz324) C A}, take

x -1y al

xT
(SE17 Xo, T3, x4) — _1
L3

see that 2L = 24, hence [ is NOT well-defined on D(z»), BUT well-defined on D(z2) U
D(z3) C X. However, does D(x5) U D(x3) is the biggest open subset such that f is well-
defined on it?

The last question of above example is a fundamental question in birational geometry, how to
find the maximal open subset such that it extends the rational map we have.

Now, we arrive at a conclusion about separateness and completeness:
(1) Separateness means if the limit exists, then it is unique.
(2) Completeness means separateness and the limit always exists!

Let’s translate the conclusion above into [Har77] version, it corresponds to the Valuation Cri-

terion, separateness means if it exists, it is unique, and properness means it exists.

13 Lecture 13.

22/10/19.

Remark 13.1. Two rational maps (fi,U;) and (f2, Us) are considered equal if Uy NUs # @ and

fllUlﬂUQ = f2|U1ﬂU2

Definition 13.2 (Locus of indeterminacy). Let (f,U) be a rational map X --» Y. The locus
of indeterminacy of f is the smallest closed subset Z C X such that for any z € X \ Z,
there exists a rational map (f’,U’) equal to (f,U) and = € U, see the existence follows from the

Noetherian property of X and X \ Z is nonempty(which corresponds to trivial case) since we
can take Z = X \ U.

Remark 13.3. Let (f,U) : X --» Y be a rational map between two irreducible varieties. Then

f naturally induces a homomorphism of fields
ffFKY)— K(X)

by

(s,V) = (so f, f71(V)NU)

recall that we are talking about sheaf of regular functions, so we have s o f.
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Definition 13.4 (Graph of rational maps). Let (f,U) be a rational map. f: X --» Y between

irreducible varieties.
(1) The graph of f is the closure of the graph of (f,U)
L(f)=T(f,0) " CXxY
where I'(f,U) = {(z,y) e X x Y : f(z) =y} CX xY
(2) The image of f is defined as the image of I'(f) under the second projection, i.e.

F(X) = pr2(L(f))
where pro is the natural projection which is not the usual image in general.

Remark 13.5. f(X) # f(U)Zar in general, actually f(X) C f(U)ZaT and f(X) is NOT neces-
sarily closed, see that f(X )Zar = f(U )Zar.

f(X)=fU )Zar when X is complete. Actually, what matters is the diagram:

L(f)
N
> f(X

D )

Definition 13.6 (Birational map). Let X and Y be two irreducible varieties. A birational map

f: X --+Y is a rational map which is dominant and f*: K(Y) — K(X) is an isomorphism.

Proposition 13.7. Let f : X --» Y be a rational map. Then f is birational if and only if there
exists U C X and V C Y nonempty open subsets, such that

flo: U=V
is an isomorphism.
Example 13.8.
(1) (Cremona map)
A2 -5 A}
1 1
(21, 22) = (9:_1’ x_g)
11
(57 ;) « (y1,92)

(2) Normalization of affine algebraic varieties are birational maps.

Chapter VI. Projective Varieties
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13.1 §A. Projective Space

Definition 13.9. The n-dimensional projective space over k, denoted by P} is the equivalence

classes
(AN {0})/ ~
where (g, ..., Zn) ~ (Yo, -, Yn) <= IX € k™ such that x; = \y; for all i. We write [zg : - - - ;]

for the equivalence class, and call it homogeneous coordinate.
Example 13.10.
(n=0). P! is a singleton [1].
(n =1). P; glues the antipoints of S.
(n = 2). We decompose it into affine pieces. Define
Up={[1:21: 3] € PR} =R’
Let
Lo =P\ Uy
{0:1: 2] :p e R}U{[0:0:1]}

see that {[0: 1 : z9]|z2 € R} ~ R(I don’t know what’s the ~ means in this case, just in set no

other structure?)

Now, let’s explain the old saying that two parallel lines on projective space meet at the infinity
point but it is not a strict proof, it is our intuition.

Let Ly =az+ by + ¢; and Ly = az + by + ¢ with ¢ # cs.

Choose (z1,y1) = P, € Ly.

If b # 0.
lim P, = lim [1: 2]
Py —oo 21—00
P1€eLy
= lim {1 D21 emma Cl]
21—00 b
a
=10:1: ——]
LR
which is the slope of L;.
Similiarly
a
li = [ 21 ——} .
Am Py 0:1 b €L
Py€ELy
hence

LmLQZ{[O:L—%}}engm
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If b =0, then a # 0.

lim P, = lim [1: 2 : ]

P —o0 Y1 —>00
PleLl;
—buyy —
— lim [1. 2479, Y1
Y1—00 a
=[0:0:1]

Similiar for Ly, hence
leLQZ{[()Ol]}

We get a beautiful describtion for L., the infinite far points.

Proposition 13.11. L., = the limits of lines in R? at infinite such that all parallel lines meet

at a unique point at L.

Definition 13.12 (Projective subspaces). Py, n-dimensional projective space. Let F' C AZ“ be
a linear subspace. Then the canonical image of F'\ {0} in P} is called a projective subspace

of P}, just use orinary linear subspace to cut projective space, then you get projective subspace.

13.2 §B. Zariski Topology on Projective Space

(1) Quotient topoplogy
Let 7 : AP\ {0} — P2,

Definition 13.13. The Zariski topology on P} is the quotient topology of the Zariski topology
on AP\ {0}, i.e. Z C PP is closed if and only if 7~1(Z) is closed.

Example 13.14. Projective subspace is closed.

(2) Homogeneous ideals

Let I C R = k[xzg, x1, ..., x,] be a homogeneous ideal. Then by Hilber basis theorem
I=(F,.. F)
with each F; is a homogeneous element. Then

V()

{[x0,zn] € PR|Fi(0, ..., xn) = 0}
=A{[zo, ..., zn) € PY|F(z0,...,x,) =0 VF € R, NI}

Remark 13.15. F; is NOT a well-defined function on P}! but its zeros are well-defined.
Proposition 13.16 (Exercise). k¥ = k and char(k) = 0.
(1) V(R) = @.

49



(3) I C J are homogeneous ideals. Then V(J) C V(I).

(4) {I,} is a family of homogeneous ideals. Then
(V) = V(3 1)

(5) I,J are homogeneous ideals. Then
VHuV(J)=V({INnJ)
Remark 13.17. The propositions above show that the subset of P} of the form V(I), where I

is a homogeneous ideal, forms a topology on P}.

Proposition 13.18. Let Z C P} be a closed subset in the Zariski topology. Then Z = V(I)

for some homogeneous ideal I C k[xy, ..., z,| = R.

Corollary 13.19. The Zariski topology on [P} is the same as the topology on P} defined by

homogeneous ideals.

14 Lecture 14.
22/10/24.
Remark 14.1. That variety Y should be 7= 1(V/(I)) C A\ {0}.

Let’s come to the third definition of topology.
(3) Covering P" by A}.
For 0 < i < n, define

U={lxo: 1w qg:1:mi:- 2]} CP”

which is open since U; = P \ V(z;).

We will see that U; is isomorphic to A}, hence we get an affine piece. Define
i Ny = U;
Yty ooy Yn) = yr c oo Loty
where ‘17 is in the i-th term, see ¢; is bijective.

Proposition 14.2. ¢; : A} — U; is a homeomorphism on Zariski topology.
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Proof. Without loss of generality, we may assume ¢ = 0, then we have a diagram:

A\ {0}
L
Ay 2 > PR

where @y maps (yi, .., Yn) to (1,41, ..., yn). See that gy = 7 0 @q is continuous.

On the other hand, we can define the inverse morphism

@Yo - UQ — AZ
x T
[xg: - x| — [—,..., —}
Zo Zo
hence A} ~ U;, we get an affine piece. O

Corollary 14.3. The Zariski topology of P™ is the topology induced by the open covering
P" = U U;, where ¢, : U; — A}, Zariski topology on U;.

We always use the standard affine piece U;, actually an arbitray linear form can give us an affine

piece!

Remark 14.4. Given a linear form L = )"  a;x;, Without loss of generality, we may assume
ag # 0. Consider the hypersuface cut by L, which means H;, = V(L) C P" with
@r - AZ — P \ HL
— D i Gl

1
(Y1 ey Yn) — a—ozylz---:yn

which gives an isomorphism to A}!

Remark 14.5 (Basis of Zariski topology on P"). Given F' a homogeneous polynomial, consider
D(F), then open subsets of this form can form a basis of the topology, called D(F') standard

open subset.

14.1 §C. Structure Sheaf of Projective Space

Definition 14.6. The structure sheaf Op~ is the unique sheaf on P™ such that

Opn

Proposition 14.7. I'(D(F'), Opn) = {F%‘G homogeneous with deg G = m - deg F'}, see its sec-

tions are well-defined on P™.

Note that D(F) N U; = D(f;) C A} 5 U,.
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Remark 14.8. Op-» = functions are locally defined by two homogeneous polynomials of the

same degree i.e. g of same degree.
Theorem 14.9 (Main theorem!). The locally ringed space (P, Opp) is a complete variety.

Corollary 14.10. Closed subvarieties of P" is also complete since closed subset of a complete

space is complete.
It is a long proof.

Proof. (1) separateness:

Let’s recall the basic properties of completeness.
Recall 14.11 (Basic properties of completeness).

(1) Let f: X — Y be a morphism of varieties. If X is complete, then f(X) is closed and again

complete, closed map and image is complete(like image of compact is compact.).
(2) If X and Y are complete, then so does X x Y.
(3) If X is complete and Y C X is a closed subvariety, then Y is complete.

(4) Affine algebraic variety if complete <= its dimension is O(hence finite points).

14.2 §D. Projective Varieties

Definition 14.12. A projective(resp. quasi-projective) variety is a closed subvariety(resp. va-
riety) of P".

Remark 14.13. Closed subvariety in P" is also complete.
Basic facts 14.14. Let X C P" be a projective variety, and R = &°,R; = k[xo, ..., ,,]. Then

(1) Zariski topology on X.

D(F) ={z € X|F(z) # 0}, FF € R; for some ¢ > 0. Then it forms a basis for the Zariski
topolpgy on X.

(2) Global sections on a complete irreducible/connected variety X are only constants.

Proof. Let f € T'(X,Ox), consider

f:X—=k=n <P
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then f(X) is a closed subset of P; since X is complete, and f(X) = finite points by it is
closed in Aj, and we embed A}, < Pi by x + [1 : z], next, using X is connected, we get
f(X) is a single point since in P; a set of finite points is connected if and only if it is a

singleton, or we can find two disjoint closed subsets to cover it. ]

(3) Regular functions on D(F).

L)) = { &

7 degG =m-degF, m >0 G € k[xo, ..., Ty) homogeneous} / ~

o
where & St

Fm "

£| - G
Fm | D(F) Fm'

D(F)’

Recall 14.15. We have known that projective varieties are complete, but does any complete
variety is projective? The answer is false, Nagata gave a counterexample. However, Chow gave

his Chow’s lemma.

Lemma 14.16 (Chow’s lemma). [Mumford The Red Book Chapter I. §10] Let X be a complete
variety over an algebracially closed field. Then there exists a projective variety Y and a birational

surjective morphism
m:Y —- X

hence it is not far from a complete variety to a projective variety.

For example of nonprojective complete variety, due to Hironaka, see [[Har77] Appendix B Ex-

ample 3.4.1.].
Algebraic Geometry I is over!

Let’s come to Algebraic Geometry II which concerns divisors, vector bundles and cohomoloy!
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Part 11

Algebraic Geometry II

54



15 Lecture 15.
22/10/26.
Chapter VII Vector Bundles on Varieties
References:
(1) [Har77] Chapter II §5. §6. §7.

(2) [Mus] Chapter g §11.6.

15.1 §A. Definition and Examples

Definition 15.1 (Vector bundle). A vector bundle V on a variety X is a variety with a

surjective morphism
p:V—-=X

such that there exists an open covering X = U,;¢;U;(you can take a finite subcover) satisfies
(1) there exists isomorphism of varieties
©; Ipil(Ui) ~ Uz x k" = Uz X AZ \4)

commuting with p, i.e.

p 1(U;) 2 s U x k™

(2) Vi,j € I, the composition
@0t (U;NU;) x k" = (U;NU;) x k"
is fiberwise k-linear, i.e. for any point « € U; N U;, the restricted morphism
piop; " {a} x k" — {a} x k"

is an isomorphism of k-vector space(see it is an isomorphism since we can give it an inverse.).
So, although ¢; is a morphism of varieties, we still write k" rather A}, since we want to

mention the structure of vector space.

Example 15.2.

95



(1)

(Tautological line bundle on P™)

We define
Opn(—1) := {[wo : =+ : @u; Ao, ..o, Am) € P" x AFTHN € k}
since we can regard P" as a set of one-dimensional subspaces of A}"!. Then the fiber of
Opn(—1) over [I] € P" is exactly the line [ in k"
We claim that
p:Opn(—1) — P
is a line bundle on P", where p is the first projection. Now, Let’s check the transition

functions.

Let Uz = D(l’z) Q [Pn, then
pip H(U) = AL Xk

by
Zo Tn Zo X Tn
To: T A—, e A— | | —, e, —, o, — A

consider ¥;; = ¢; o ¢; !, we want to know the transition function, which means how does it

glue or what’s the action on k.
pjop U NU; x k= UiNU; x k

Let’s break the map in steps:

x x
=1, ~ . . 1. . . 0 n
o T T R [mo R B .xn,k—,...,k,...,k—}
T T
see that
Zo Tn o Ty T; To Tj Tp
o:-iloeiaxyk—, Lk k—|=|— i — k= — k=~ —
ZT; ZT; T X T Xy Ty Xy
then
ZTo Tn To Tp &€
@jilwoi it k—, L Ek— | | — e —k—
€T; ZT; X5 X ZT;
hence
Ly
Vi Ui NU; — —
J J
Z;

the action on £.
Remark 15.3. In the affine part, we always use =+ to get a well-defined formula.
J

(Hyperplane bundle)

We define
Opn (1) = dual bundle of Opn(—1)
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which means we attach the one-dimensional vector space structure of dual map of the line
[in k™ to P™.

Transition fucntion of Opn (1) is
Vi D(w1) N D(xy) — GLy (k) = £~

by
[:C(]:~~::Cn]l—>ﬁ
L

(Tangent bundle of a nonsingular irreducible affine variety) Let V' C A} be an irreducible
affine algebraic variety, and I(V) = (F}, ..., F},). We define Zariski tangent bundle TZ%" as

TE" = {(x v) eV x k" 8%

which means equipping each point its tangent space.

For any x € V', we have

Té;r:p_( :{Uek” 8x ;=0 1§i§m}
j

=T,V —x Ck"=A}

where
P T‘g R V4

is the first projective. Since V' is irreducible and nonsingular, we have dim 7 é;r =dimV =r.

Here are some interesting examples of vector bundles.

Example 15.4.

(1) Trivial vector bundle.

V x k™.

(2) Let Vi and V3 be vector bundles on X. Then we can construct new vector bundles using

algebraic operations.

(2.a) Direct sum.

Vi @ Vy such that (V) & Vi) (x) ~ Vi(z) ® Va(x), where V(z) = p~1(z).
(2.b) Tensor product.

V1 ® V; such that (Vi @ Vo) (2) ~ Vi () @ Va(z).
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(2.c) Exterior power.
i > 1, \' Vi, such that (A’ Vi)(z) ~ N\ (Vi(x)).
(2.d) Symmetric power.
i >1, Sym'V; such that (Sym’V;) (z) ~ Sym'(Vi(z)).
(2.¢) Dual bundle.
Vi® such that Vi*(z) ~ (Vi(x))".
(2.f) Determinant.
det V4 such that det Vi (z) =~ A"(Vi(x)), where r = rank(1}).

Definition 15.5 (Line bundle). A vector bundle of rank 1 is called a line bundle.
Remark 15.6 (Transition functions).
(1) We can regard

(pjogpi_l : (UZﬂU]) xk”—)(UiﬂUj) x k"

as a morphism, more explicitly
Q/Jij : Uz N Uj — GLn(k)
then a vector bundle of rank r over a variety is determined by the following data:

i. An open covering X = UU,.

ii. A family of transition functions
{vi: UiNU; = GLa(k) C &7}

such that

Vi1 0 Yijlwinv,nv) = Yalwinv,nvy Vi, 4,1

(2) Every algebraic operation of vector bundle can be translated as an algebraic operation of

transition functions.

i Vs V™

(Ui, i) ~ (Us, (¢5;)"), wher (1;;')" is the transposition of the inverse matrix.
ii. V ~detV.

(Ui, ij) ~ (U;,det ¢);;), where det v;; is the determinant of matrix.

oF;

5 (m)} _ has rank n — r as V is non-singular and of
T 1<i<m

1<5<n
dimension r. Without loss of generality, we may assume the upper (n — r) block A has nonzero

determinant, define G = det A and let U = D(G) C VSomething left

Given a point x € X, the matrix [
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Definition 15.7 (Homomorphism of vector bundles). Let V; and V, be vector bundles on X.
A homomorphism
fVi= Vs

is a morphism of varieties commuting with projections on X i.e.

Vi ! s Vs
X

and f(z) := flw@) : Vi(z) = Va(x) is a k-linear map of rank independent of x, which means it

is a constant rank.
Example 15.8. X = AL, V; = A} x k, and Vo = A}, x k, take
fVi—=V,

by

(x,v) = (x,zv)

is not a homomorphism of vector bundles since its map at 0 is a zero map of rank 0, but rank 1

at any other points.

Definition 15.9 (Pullback). Let f : X — Y be a morphism of varieties. let V' be a vector
bundle on Y. Then the pullback(fiber product) f*V is a vector bundle on X such that

V() =V(f(x))
more precisely, if V' is given by (U;, 1;;) then f*V is given by (f~Y(U;), vij o f)

Caution 15.10. Pushout may NOT be a vector bundle.

15.2 §B. Picard Group

Definition 15.11 (Picard group). Let X be a variety. The Picard group Pic(X) of X is

defined as the set of line bundles over X modulo isomorphic equivalence, which means

Pic(X) = {line bundles on X} / ~

where L ~ L' if L ~ L' as vector bundles with
(a) Zero element: trivial line bundle X x k.
(b) Multiplicity: L-L':=L® L'

(c) Inverse: L™ = L*, the dual bundle.
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Remark 15.12.

(1) Without loss of generality, we can always assume L and L’ are given by (Uy, ¢y;) and (Us, ;).
Then

L® L' = (Us,vij 0 y)
(2) Pic(X) is an abelian group.
Example 15.13 (Pic(P")). Pic(P") ~ Z - Opn(1) denoted by
Opn (1)®™ m >0
Opn(m) = ¢ Opn m=20
Opn (—1)2C™ m < 0
transition functions for Opn(m) : ¢;; = (g—;)m, me/Z.
In the remaining part of this chapter, we will study these sets of objects:
Pic(X)

Divisors < > Inv(X)

16 Lecture 16.

22/10/31.

16.1 §C. Weil Divisors and Cartier Divisors

In this subsection, we always assume X is an irreduvible variety.
(1) Weil Divisors

Definition 16.1 (Weil divisor).
(1) A prime divisor on X is an irreducible codimension 1 closed subvariety of X.

(2) A Weil divisor D on X is a finite formal linear combination of prime divisors with coeffi-
cients in Z, i.e.

D:n1D1—|—~~+nrDT

with n; € Z and D; are prime divisors.

(3) The group Div(X) of Weil divisors on X is the free abelian group generated by prime divisors
of X with
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(a) 0=0.
(b) D+ D' =>"(n; +n)D; where D = > n;D; and D' = > n.D,;.
(¢) =D = (—=ni)D;.

(4) A Weil divisor D is called effective if all its coefficients are non-negative, in this case, we

write D > 0.
(5) Given two Weil divisors D and D', we write D > D" if D — D' > 0.

Recall 16.2. Let X be an irreducible normal variety, for any prime divisor D of X, there exists

an affine open U C X such that
(a) UND # 2.
(b) 3h € I'(U, Ox) such that I;;(D) = (h) C I'(U, Ox), where Iy (D) is the ideal of UN D in U.

Definition 16.3 (Principal divisor). Let X be an irreducible normal variety. Given a non-zero

rational ¢ € K(X), we define a Weil divisor on X as

div(¢) := ZordD(gb) -D

D

which is the principal divisor associated to ¢, D runs all prime divisors.
Remark 16.4.

(1) In the definition, the integer ordp(¢) is defined as following: given a divisor D, we choose

an affine open U of X such that
(a) UND # 2.
(b) Iy(D) = (h), h € I'(U, Ox).

write ¢|y = 5 where f,g € I'(U, Ox), then we define

ordp(¢) = ord,(f) — ordp(g)

(2) div(¢) is a finite sum.

In fact, there exists an affine open U C X such that ¢ € I'(U, Ox) and ¢ # 0, hence there
exists U’ C U an affine open such that ¢|y» nowhere vanishes. In particular, if ordp(¢) # 0,
then D C X \ U’, moreover number of D is finite, since we can decompose X \ U’ into finite
disjoint union of irreducible components by Noether property, and D has codimension 1,

hence only finite choice.
Definition 16.5 (Class group and linear equivalence).
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(1) The canonical map

div: (K(X))" — Div(X)
is a group homomorphism of abelian group.

(2) The class group: Cl(X) is the quotient Div(X)/Im(div). For a Weil divisor D, we write
[D] for the class of D in CI(X).

(3) Two Weil divisors are linearly equivalent if [D’] = [D] i.e. there exists ¢ € K(X) such
that D = D’ + div(¢), write D ~ D'.

(2) Cartier Divisor

Definition 16.6. Let X be an irreducible normal variety. A Weil divisor D on X is called
Cartier if D is locally principal i.e. there exists an open covering X = UU; and ¢; € K(U;)
such that

> ni(D;NU) =DNU; =div(¢;) Viel

where D =) " n;D;.

Lemma 16.7 (Effective Cartier divisors). Let X be an irreducible normal variety and D =

> n;D; be an effective Cartier diviosr(since it is a Weil divisor, so we have the sense of effective
Cartier divisor) given by X = UU; and ¢; € K(U;). Then ¢; € T'(U, Ox), namely regular.

Proof. Since D is effective, there exists Z; C U; of codimension > 2(Why?) such that ¢; €

L'(U; \ Z;), Ox, more, U; are normay by X is normal. By Hartogs Extension, we have

Recall 16.8 (Serre’s criterion). Let A be a Noetherian ring.

(1) Ry : A, is a regular local ring for any prime ideal p of ht(p) < k.
(2) Sk : depth A, > inf{k, ht(p)} for any prime ideal p.

Then

(1) Ais a reduced ring <= Ry, S; hold.

(2) A is a normal ring <= Ry, Sy hold.

(3) A is Cohen-Macaulay <= Sy hold for all k.
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Example 16.9 (Weil divisors which are NOT Cartier). X = V(z123 — x374) C A} = X is
irreducible and normal by Serre’s criterion(if X is an irreducible normal variety, and Cohen-
Macaulay, then it is normal, we take regular sequence {z1, xo, x3 + 24}).

Consider Dy = {x; = 23 = 0} N X and Dy = {22 = 74 = 0} N X both are isomorphic to AZ.
Then D; N Dy = {0,0,0,0}. Hence dim D; = dim Dy = 2, dim Dy N Dy = 0.

Then D; and D, are not Cartier. In fact, we may assume that D; is defined by ¢ € I'(U, Ox)
where 0 € U a open neighborhood. Then ¢|p, # 0, however, by Krull’s principal theorem

0 =dim(D; N Dy) = dim(V(4|p,)) =dim Dy —1 =1
it is a contradiction.
Example 16.10. Principal divisor is Cartier.
Definition 16.11. Let X be an irreducible normal variety.

(1) X is called factorial if all Weil divisors on X are Cartier.

(2) X is called Q-factorial if for any Weil divisor D, there exists m € N depending on D such
that mD is Cartier.

Example 16.12.

1. Using the same argument X = V(zq29—2314) C Aﬁ is NOT Q-factorial, since its dimension

of Dy N Dy is wrong.

2. X = V(xyze — 23) C A}, consider D = {z; = 23 = 0} C X. Then D is not Cartier,

however 2D is Cartier, which is defined as div(z;). Let’s compute it in details:

Proposition 16.13 ([Har77] Chapter II Proposition 6.11.). Let X be an irreducible normal
variety, if Ox , is a UFD for any € X, then X is factorial. In particular, if X is non-singular,

then X is factorial(since regular local ring is UFD).
Notation 16.14. The subgroup CaCl(X) of C1(X) which generated by Cartier divisors.

Definition 16.15 (Pullback of Cartier divisors). Let f : Y — X be a morphism of irreducible

normal varieties, let D be a Cartier divisor on X given by
(i) X =UU..
(i) ¢ € K(U;) = K(X).
then the pullback f*D is a Cartier divisor given by
() Y = UfH(U0).
(i) i = @iof € K(f~1(U;) = K(Y).
Remark 16.16. In general, we can NOT define the pullback of a Weil divisor.
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17 Lecture 17.

22/11/2.

17.1 §D. From Cartier Divisor to Line Bundles

Let X be an irreducible normal variety, and D be a Cartier divisor on X given by X = UU; and
¢ € K(U;) = K(X).

See that div(¢1)|v,nv, = Dlvynv, = div(da)|v,nu,, where we can view D|y,np, as zeros and poles
of ¢1 and ¢y in Uy N Uy, hence %‘U10U2 has no zero and pole, which means % UL NUy — K.
Define ; = % € K(U; N Uj) Vi, j. Then ¢y : Ui N U; — k*.

Hence, 1;; € I'(U; N U;, Ox) and 1;; nowhere vanishes.

Definition 17.1 (Line bundle associated to D). The line bundle Ly on X associated to D is
the line bundle given by

(i) X =UU,.
(i) vy = % UinU; — k* = GLy (k).
Picture.

Remark 17.2. Easy to see that

Vi

UiﬂUjﬂUl = w]l : wz‘j UiﬁUjﬁUl'

Definition 17.3 (Rational and global sections of line bundles). Let L be a line bundle on an

irreducible normal variety X given by the following data
(i) X = UU; an open covering with L|y, ~ U; x k.
(i) oy : Ui N U; — k* Vi, j.
(1) A rational section of L is given by the following data:

(l.a) {s;} with s; € K(U;) = K(X).
(Lb) s; = -s;in K(U;NU;) = K(X) Vi,7.

For example: Picture

(2) A global section of L is a rational section {s;} such that s; € I'(U;, Ox).

Picture
Remark 17.4.
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(1) {global sections of L} JELLN {s: X — L morphism such that mos=1dyx, 7: L — X}

(2) Let D be a Cartier divisor given by X = UU; and D NU; = div ¢; with ¢; € K(U;), then
{¢i} is a rational divisor, just use natural transition function. In particular, if D is effective,
then ¢; € T'(U;, Ox) and {¢;} is a global section of Lp.

Lemma 17.5. Let D be a principal divisor, then Lp is isomorphisc to the trivial line bundle.
Proof.

D is principal <= D = div(¢) some ¢ € K(X)

<= Lp is given by X X k.

By the lemma, we get a homomorphism of abelian groups

CaCl(X) -2 Pic(X)

[D] = [Lp]

and
[D + Dl] —> [LD X LD/]

see it is well-defined by if D’ is principal then Lp/ is trivial which is the identity element in
Pic(X).
Lemma 17.6. The homomorphism L is injective.
Proof. Let D be a Cartier divisor with
(i) X =UU,.
(ii) Dly, = div(¢;) ¢; € K(U;)
such that Lp ~ X x k as vector bundles.

Take
s: X > X xk

by
x— (z,1)
We can have a diagram:

Uy x k —— Lply, == U; x k

\_/

i
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Let’s define
S; ¢ Uz — k

by
z = @ H(x,1) = (z,s:(x)) see that s;(z) # 0

Note that {s;} is a global section of Lp — X, hence

b;
?ﬁu = g]  Si|U;
hence
5 in K(U;nU;) = K(X)
Pilvinu, ¢l
Define ¢ = % € K(X), see that div(¢)|y, = div(¢;) on U;, hence D = div(9). O

Definition 17.7 (Cartier divisor defined by rational sections). Let s = {s;} be a rational section

of a line bundle L, then we can define a Cartier divisor div(s) as following

div(s) := Z ordp(s) - D

D prime

where ordp(s) is defined as ordp(s;) for U; N D # .

Remark 17.8. If DNU; # @ and DNU; # @, then DNU; NU; # @ since D is irreducible.
We have

ordp(s;) = ordp(s; - ¢ij) = ordp(s;)

hence ordp(s) is well-defined with respect to 1.
Lemma 17.9. L : CaCl(X) — Pic(X) is surjective.
Proof. Let L € Pic(X) be a line bundle given by
(i) X =UU..
(i) i : U;NU; — k*.
Define a rational section {s;} € Lp as following:
(1) s1: Uy — k* by o — 1.
(2) si =151 € K(UNU;) = K(U;) = K(X) is well-defined since v;; - ¥;; = ¥y
Let D = div(s) be the Cartier divisor associated to {s;}. Then Lp is

(1) X = U,
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Hence Lp ~ L. ]
Remark 17.10.
(1) Recall that I'(X,Ox) = k if X is irreducible and complete.

(2) We regard a line bundle Lp as a data:

LD:|_|Lx

zeX

where L, is a one-dimensional k-vector space.

(3) A rational section/global section s of D is a ‘rational’/ ‘regular’ map

X 2 |_| L,
rxeX
by

x> s(x) € L, or oo if z is a pole.

(4) A Cartier divisor can be regarded as zeros minus poles of a rational map

s: X — |_| L,
(5) CaCl(X) ~ Pic(X) by
[D] — [Lp]
the other direction
[Div(s)] < [L]

where s is a rational section of L.

17.2 §E. Sheaf of Sections of Vector Bundles

(1) Sheaf of sections

Definition 17.11. Let 7 : V — X be a vector bundle. 7, the sheaf of sections of V, is the
sheaf for any open subset U C X,

I'(U,Oy) ={s: U — V morphism|r o s = Idy}
Picture
Remark 17.12. If V is given by
(i) X = UU;.
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Then ¥|y, ~ sheaf of sections of U; x k" ~ OF".
(2) Sheaf of Ox-modules

Definition 17.13. Let (X,Ox) be a ringed space. A sheaf of Ox-modules is a sheaf of
abelian groups .# such that for any open subset V' C X, we have a I'(U, Ox)-module structure
on Z#(U) and these structure are compatible with restriction maps: for any open V C U, we

have
(a-s)lyv=aly-sly Vael(U Ox)and s e '(U, )

Example 17.14. The sheaf of sections ¥ of a vector bundle over X is a Ox-module.

f-s: U=V
s+ f(z)s(x)

since locally, the sheaf of sections is isomorphic to the free sheaf OF", hence f - s € I'(U,Oy).
Definition 17.15. Let (X, Ox) be a ringed space.
(1) Let #,%9 be two sheaves of Ox-modules. A morphism
o F -9
of sheaves of Ox-modules is a morphism of sheaves such that for any open subset U C X
oy DU, F) = T(U,9)
is a morphism of Ox(U)-modules.

(2) A sheaf .F of Ox-module is locally free if there exists an open covering X = UU; such that
F

U, ™ (’)E‘Z’" isomorphic as sheaves of Op,-modules.

Example 17.16. If 7 is the sheaf of sections of a vector bundle, then it is locally free.

18 Lecture 18.
22/11/7.

Remark 18.1.
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(1)

E =UU;.
1/12']' : UZ N Uj — GLT(]{Z)

E = a vector bundle of rank r, given by

E* = UU;.
vy = (")t Ui N U; — GL (k).

check that for A € GL(V) ~ (AL)(v) := L(A '), where V is a vector space, v € V,

L € V*, a linear form.

E* = the dual bundle of E given by

In the definition of pullback of a Cartier divisor, f : X — Y a morphism between irreducible
normal varieties, D a Cartier on Y. The f*D is well-defined if f(X) € Supp(D) = UD;, or,
¢; 0 f: fH(U;) = k =0, hence

X =U(f~Hy)).

pi=¢;0f=0.

/D=

which is not a Cartier divisor.

Let X be an irreducible normal variety. D C X is a prime divisor, ¢ € K(X)*. ¢ = g where

ord,(¢) = max {m € Zso|such that f € (h™)}

Here we use the Krull’s intersection theorem to guarantee that ord,(f) < oo.

Theorem 18.2 (Krull’s intersection theorem). [JAM94] Cor 10.18.] T'(U,Oy) ~~ A is
Noetherian, (1) # o C A an ideal, then ﬂ a =0, hence ord,(f) < oo.

n>0

18.1 §F. From Cartier Divisors to Invertible Sheaves

Definition 18.3. Inv(X) := {invertible sheaves on X} / ~, where L ~ L' if they are isomorphic

as Ox-modules.

Remark 18.4. Inv(X) is an abelian group.

(1) 0= Ox.

2) L' = L* the sheaf U — Homop,, (L, Op).
U

(3) L-L':= L®L', where L& L' is the sheaf associated to the presheaf U — L(U)®rw,0) L' (U).

Definition 18.5. Let X be an irreducible normal variety and let D be a Weil divisor on X, we
define a sheaf of Ox-module Ox (D) on X as

U—T(U 0x(D)):={¢ € K(U)" = K(X)"[div(¢)|v + Dlv = 0} U{0}.
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Remark 18.6.

(1) I'(U,Ox (D)) : rational functions on U with restriction on zeros and poles.

zeros > D™, poles < DT, where D = D™ — D~

(2) In general, we want to find rational functions on X with ‘less’ poles and ‘enough’ zeros, i.e.
find ¢ € K(X)* such that Zeros(¢) > D~ and Poles(¢) < D*.

Proposition 18.7. Let X be an irreducible normal variety, D, D" are two Weil divisors on X.
Then Ox (D) ~ Ox(D’) as Ox-modules <= D ~ D',

Proof. <: Assume that D ~ D', hence there exists a ¢ € K(X)* such that D = D' 4 div(¢).
Define
oy : I'(U,0x(D)) — T'(U, Ox(D"))

by
S S

s - ¢ is well-defined by they are rational functions.

s € T(U,0x(D)) <= div(s)|y + D]y >0
< div(s)|y + D'|y + div(¢)|y >0
<~ div(s- @)y + D'y >0
<~ s-¢9 (U Ox (D))

Similiarly, we define

1. T(U,0x(D") = I'(U,Ox(D))

by
S
S —

¢

check that they are inverse to each other, hence we get the isomorphism.

= Assume that ¢ : Ox(D) ~ Ox(D’) as sheaf of Ox-modules. Since X is an irreducible
normal variety, we can remove a closed subset of codimension > 2 such that X is non-singular.
Without loss of generality, we may assume X is non-singular. Then D and D’ are Cartier. Hence
we get an open covering X = UU; and ¢, ¢’ such that D|y, = div(¢) and D’|y, = div(¢}) for any
1. Let

i = ply, : T(U;, Ox(D)) — T'(U;, Ox(D"))

Claim 1. For any ¢, 3lh; € K(U;)* = K(X)* such that ¢;(-) = -h;.
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Proof. Note that i € I'(U;, Ox (D)), define h; = ¢; - cp(i) e K(U;)*. Vs € I'(U;, Ox (D)), we
have div(s)|y, + D

v, > 0, hence s - ¢; € I'(U;, Ox). In particular, we get

w6 =i (52005 ) =5 une (5 ) =5+ < T0LOX(D)

o o
O
Claim 2. Vi, j, h; = h; € K(X)*, we denote it by h.
Proof. Assume X is irreducible, hence U; N U; # &, and ¢i|v,nu; = ¢jlu.ny; [l
Claim 3. D = D' +div(h).
O

Corollary 18.8. Let X be an irreducible normal variety, D is a Weil divisor on X. Then D is
Cartier <= Ox(D) is an invertible sheaf.

X =UU;

Proof. =: Assume that D is Cartier, then D =

U; ¢1 € K(X)
See that .
OX(D)lUZ ~ —(QU1 ~ OUi

<: Assume Ox (D) is invertible, hence there exists an open covering UU; such that Ox (D)|y, ~

Ouy,, by the proposition above, we get D|y, ~ 0, so D is Cartier. ]

18.2 §G. Summary

In diagram: Left.

Let X be an irreducible normal variety.

(1) Pic(X) = {line bundles on X}/ ~, where ~ means isomorphism of line bundles.

(2) CaCl(X) = {Cartier divisors on X}/ ~, where ~ means linearly equivalence.

(3) Inv(X) = {invertible sheaves on X}/ ~, where ~ means isomorphism of invertible sheaves.

(4) The diagr[AM94] is commutative of homomorphisms of abelian groups.
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18.3 §H. Global Sections on Linear Systems

Let X be an irreducible normal variety.
X =UU;

D a Cartier divisor on X given by

Lp = line bundle associated to D.
Ox (D) = invertible sheaf associated to D.

Remark 18.9 (From global sections of Lp to global sections of Ox(D)). Consider

Definition 18.10 (Complete linear system). The complete linear system associated to D is

the set
|D| := {D’ € Div(X)|0 < D' and D' ~ D}

Convention 18.11. If V is a vector space, we write P(V') for P (V' '\ {0}), the projective space
of V.

Definition 18.12. We define
@ : P((X, Lp)) = |D)

by
5+ div(s)

which is well-defined since div(s) = div(As) for A € k*.
See that

s = {si}ies = div(s)|y, = div(s;) = div(¢) + D]y, > 0
= div(s)|y, = D'|y, > 0 where D' = div(¢) + D
=D >0
= D' € |D|

19 Lecture 19.

22/11/9.

Proposition 19.1.

(1) ® is surjective.

(2) If X is projective, then ® is injective.

(3) If 0 7é S1 € F(X, LD1> and 0 7é S9 € F(X,LDQ), then s1 ® sy € F(X,LDl X LDQ), with
div(sy ® s2) = div(sy) + div(se) € | Dy + Ds|.
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Proof.

(1) Given 0 < D’ € |D|, then 30 # ¢ € K(X) such that D’ = D + div(¢), hence ¢ €
X =Uy;

I'(X, Ox(D)), which means {¢-¢; } defines a global section of Lp, where

Note that ¢ - ¢; = (¢ - ¢).
(2) Assume X is projective, then I'(X, Ox) = k. If div(s1) = div(sz), then 0 # 2 € K(X) is

regular, hence [s1] = [s2] in P(I'(X, Lp))( affine case is false, see in D(f), % nowhere vanishes

but not a constant).
(3) Easy by definition.
O

Remark 19.2. (1)+(2) means that for an irreducible normal projective variety X and a Cartier
divisor D on X, the study of |D] is equivalent to the study of the group of global sections of
LD, i.e. F(X, LD)

19.1 §I. Ample and Very Ample Line Bundles
(1) Global section of Op~(m).

Recall 19.3. [zg : -+ : x,] on P", s = k[xy,...,z,] and U; = D(x;) = {x; # 0} C P". The line
bundle Opn(m) is given by the data

(i) X =UuU;

8
=3

(ll) I/JZ]UZQUJ%I{?* [JIOJITLI%

8
=3

Proposition 19.4.
. S, m >0
F([P ,O[Pn(m)) —
0 m <0

P = UU;
Lemma 19.5. Let 0 # s € I'(P", Opn(m) be a global section givenby < s, = & F, € S,

x¢
m

s
u,nU; — pm * Si
J

Sj UZ‘QU]'

(2) Base Locus of Linear System Let X be an irreducible normal variety, D a Cartier divisor
on X, and ¢ : P(I'(X, Lp)) — |D|.

Definition 19.6 (Linear system). A linear system associated to D is the image of projective
linear k-subspace of P (I'(X, Lp)).
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Definition 19.7 (Base locus of global sections of line bundle). Let X be a variety, L a line
bundle over X, W C I'(X, L) a liner k-subspace. Then the base locus of W is defined as

Bs(W):={zx € X|s(x) =0 Vse W}
We say that W is base point free if Bs(WW) = @.

Remark 19.8. If dim W < oo with sy, ..., s, a basis, then Bs(W) = V(s;) N---NV{(s,), hence

closed.

Definition 19.9 (Base locus of linear system). Let X be an irreducible normal variety, D is a

Cartier divisor over X, W C |D| a linear system. The base locus of W is
Bs(W) := {z € X|z € Supp(D’') VD' € W}

All linearly equivalent divisors must pass through z, hence you can’t move divisors to avoid x.
We say W is base point free if Bs(W) = @.

Remark 19.10. Let W C |D| be a linear system corresponding to linear k-subspace W’ C
I'(X, Lp). Then Bs(W) = Bs(W')

I'(X, Lp) — |D|
by

s+ div(s)

(3) Morphism to projective space defined by linear systems
Let L be a line bundle over a variety X. Take W C I'(X, L) a base point free finite dimensional
linear k-subspace, we want to define a morphism X — P(WV) using
(a) First definition using a basis of W.
Let so, ..., sy be a basis of W over k. Then we have WV ~ kN*! using the dual basis {s}'}.

Define
Py X — PV

by
x> [so(x) - sy(2)]

need to check ®y is well-defined.
Lemma 19.11. &y is well-defined.

Remark 19.12. Since W is base point free, for any x € X, there exists some ¢ such that

si(z) # 0, hence ®yy is a morphism.
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(b)

Second definition without using a basis of W.

For x € X, we define W, := {s € W|s(x) = 0}, and a valuation map
vy W =k
by
s s(x)

Bs(W) = @ = v, is a surjective k-linear map, hence W, C W is a linear k-subspcae of

codimension 1.

Consider (W/W,)" := W C WV, the annihilation of W,, is an one-dimensional linear

k-subspace, where Wt = {l € WV| l|w, = 0}.

Then, we define
CI)W X = IP(WV>

by
x e W

Exercise 19.13. The two definition of ®y coincide.

Morphisms defined by linear system.

Let X be an irreducible normal variety, D a Cartier divisor on X, |W| C D a base point

free finite dimensional k-linear subspace corresponding to W’ C I'(X, Lp). Then we define
(I)‘W| =y X — IP((W/>\/)
Rational map to projective space.
W CT(X, L), a finite dimensional linear k-subspace, then
Dy X - P(WY)
is the rational map given by
(I)|W| - X \ BS(W) — [P(Wv)

by
W' =Im(D(X, L)) 2% T'(X \ Bs(W), L)

(4) Ample and very ample line bundles
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Definition 19.14 (Very ample line bundle). Let L be a line bundle on a variety X. We say
that L is very ample if there exists W C I'(X, L), a base point free linear k-subspace and a
subvariety Z C P(WW") such that

Py X — P(WY)

induces an isomorphism

q)|W| X ~Z
Example 19.15.
(1) Opn(1) is very ample.
I'(Opn, Opn(1y) = S1, choose xg : - - : x,, as a basis, see
P* — P (WY)
by
[xO xn] — [.’L‘o .’L'n]

where x; on the right is the dual map.
(2) Choose a subvariety X C P", then Op(1)|x is very ample.
(3) Opp is very ample.
take 1,Y7,...,Y, € (AL, Opp), W = spac{l, Y1, ..., Y, }, see
Ay — P
by
Y1y ooy Yn) = [Liyr oo 2y

Definition 19.16 (Ample line bundle). Let L be a line bundle over a variety X, we say L is

ample if there exists m € Z* such that L®" is very ample.

Definition 19.17 (Ample and very ample Cartier divisors). Let D be a Cartier on an irreducible

normal variety X, we say D is ample(resp. very ample) if L is ample(resp. very ample).
Remark 19.18.

(1) D is ample <= mD is very ample, hence we can define ampleness for Q-Cartier divisor, i.e.

a Q-Cartier divisor is ample if there exists m such that mD is a very ample Cartier divisor.

(2)

{ample line bundles on X} RN {embedding X into a projective space}
Example 19.19.
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(1) (Linear projective space)

Let L C P™ be a projective linear subspace of dimension r. There exists Ly, ..., L,,_, linearly
independent linear functions such that V(L) = (Ly,..., L,—,)(viewed as a linear system).

Then the projective form is defined to be the rational map
pr L P
by
x> [Ly(z) -+ Ly ()]
7r, is regular on P\ L.
(2) Fo,...,EF. € T(P",Opn(d)), k-linearly independent, W = span{ Fy, ..., F.}, see that
Oy : P --» P(WY)
by
(kg : -ty = [Fo(z) -+ Fro(z)]
(3) (Veronese embedding)
W7 =T(P", Opn(d)) with d > 1. Then the d-th Vernoese embedding is the morphism
P =4 PN
by
[2o: - xp] > [ 2ty oo 2]

where N = dim (P",Opn(d)) — 1 = (™+4) — 1. Indeed, it is an embedding which means
P ~ Im(vy).

We can also view it as for d € Z-o, Wi = T'(P", Opn(d)) = Sy, then vg = Qpyym).

20 Lecture 20.

22/11/14.
Continue last lecture.
(4) (Plane conics)
Consider
Oy - P — P?
by
(20 : 1] = [22 1 202y @ 23]
Let Z be the image @ (P'). Then
1(Z) = (Y{ - VoY) C P

77



(4) (Twisted cubic)

Consider
Oy - P — P

by

[zo : 71 = [28 : 2371 : o] @ 7}

Let Z be the image @y (P') € P?. Then Z is called the twisted cubic and

1(Z) = (YoYs — V1Y, Y — VY5, Y7 — V1Y53)

(4) (Segre embedding)

P x P2 2 pra

prs
Opni X Opnz (dy,dy) = priOpni (d1) @ praOpns (dg) with dy,dy € Z. We claim that
Wdlyd;’“lv"Q =T (P™ x P", Opni X Opnz(dy,ds)) = T'(P™, Opni (dy)) @ I'(P™?, Opni (d2))

Consider

(I)|W1n%,n2‘ : |]:>n1 X [Pm N [P(n1+1)(n2+1)’1

by
(ot t @y X (Yot Yno| F [ToYo t Toyr Tt Ty Yy

is called the Segre embedding of Pt x P"2.

Remark 20.1. Let L be a very ample line bundle, there exists W C I'(X, L) a base point free

finite dimensional k-linear subspace with
Py X ~Z CPY

where Z is a subvariety, then L ~ ®3Op~ (1)

20.1 §J. Basic Properties of Ample Line Bundles
(1) Quasi-projective varities
Definition 20.2.

A variety X is quasi-projective <= there exists an isomorphism ¢ : X ~ 7 C P" where Z is a subvarie

<= there exists an ample line bundle on X
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Recall that Hironaka says there exists complete varieties that are not projective, hence there
exists varieties having no ample line bundle.
(2) Twisting by Globally Generated Line Bundles

Definition 20.3. A line bundle L is globally generated if Bs(I'(X, L)) = &.

Remark 20.4. By Noetherian property of X, L is globally generated <= there exists an
W C I'(X, L) finite dimensional such that Bs(W) = @.

Proposition 20.5.

(1) L is very ample and L’ is globally generated = L ® L' is very ample.
(2) L and L' are globally generated = L ® L’ is globally generated.

(3) L is ample and L’ is globally generated = L ® L’ is ample.

Fact 20.6. The graph of morphism is closed. More precisely, if f : X — Y is a morphism of
varieties, then I'y := {z, f(z) € X x Y|z € X} C X x Y is a closed subset. Because

I'y = ® 1(Ay) where Ay is closed.
by

(f,Id) closed .
O: X xY ==Y xY DO Ay diagonal

(z,y) = (f(z),)
hence I' C X x Y is closed.
Proof.
(1) Without loss of generality, we choose W C I'(X, L), W' C T'(X, L) such that
(a) @y : X ~ Z C P™ an isomorphism.
(b) ®ywr : X — P a morphism.

Then set W =W @ W CI'(X,L® L’). See that

q);XM[PNlXH:Nz
k l
Z C PN

close

d
Denote Y = ®(X) C PY x P2, is it locally closed? See Y = ®(X) =1, C Z x P,
where f 1= Qo Ot Z — PM2. Z x PV2 C PV x P2 is locally closed since Z C P is

locally closed. Hence I'; is locally closed in P x P2,

79



(2) Vo € X take sy € ['(X, L) and s € I'(X, L’) such that s;(x) # 0, then sy ®s9 € I'(X, L& L)
and (s1 ® s9)(z) = s1() @ so(x) # 0.

(3)
L is ample <= 3m € Z-( such that L®™ is very ample
W reme s very ample

(1£) (LR L™ = L8 ® L™ = (L@ L) @ L'®m=1) ig very ample
= L ® L' is ample

(3) Twisting an Ample Line Bundle

Lemma 20.7 (Extension of global sections, [Har77] Chapter II lem 5.14.). Let X C PV be
a quasi-projective variety, L = Opn(1)|x. Given a homogeneous polynomial F € T'(X, L®?)
of degree d > 0, and a local section s € I'(D(F),L). Then there exists n € Z-, such that
Fr®s e (D(F),L®"® L') extends to a section § € ['(X, L¥"?® L) such that 3| pr) = F"®s.

Idea of proof. s € I'(D(F),L’). Thus we can view s as a rational section of L’ with pole
C V(F), take n large enough such that F™s has no pole.

Proposition 20.8. L an ample line bundle, I’ an arbitray line bundle. Then there exists

m € Zq such that L®™ @ L’ is globally generated.

Proof.

Step 1. Reduce to the case where L is very ample.

Since there exists m € Z such that L®™ is very ample. If there exists m’ € Z-( such
that (L®m)®m/ ® L' is globally generated, then L®™™ @ L' is globally generated.

Step 2. Reduce to point.

More precisely, it is enough to show that for Vo € X there exists m € Z- such that
there exists s € I'(X, L®™ ® L') with s(z) # 0.

Indeed, as L is very ample, for any m € Z-,, we have Bs(I'(X, L%t @ [')) C
Bs (D(X, L& @ L')). See that T(X, L @ L) @ T(X, L&) Cleft

Corollary 20.9. Let L be an ample line bundle over a variety X.

(1) Ing > 0 such that L®" is globally generated for any m > ny.
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(2) Imgy > 0 such that L™ is very ample for any m > my.
Proof.

(1) Assuming the contracting that there exists n, — 4oc such that L®" is NOT globally
generated. On the otherhand, there exists m € Z-q such that L®™ is very ample. After
passing to a subsequence, we may assume n; = r;m + ¢ with r;, - +oo 1 <c<m —1. By
the proposition above, there exists m, € Z~( such that L& @ L®¢ is globally generated
= if 11 > m, then L& = [®n—ma)m & [mmete ig globally generated.

2) Take mgy = m+ng where L&™ is very ample = L& = [&™ L™= for m! > m-4-ng =
(2) 0 +ng y amp ® > m+ng
very ample q.9.

myg, hence L®™ is very ample.

21 Lecture 21.

22/11/16.

Corollary 21.1. Let L be an ample line bundle and L’ be an arbitary line bundle, then
(1) Ing such that L™ @ L' is globally generated for any n > ny.

(2) Img such that L™ @ L’ is ample for any m > my.

(3) I such that L®" @ L’ is very ample for any r > ry.

Proof. From Corollary , we know there exists n’ € Z.q such that L& ® L’ is globally
generated. Fined n” € Z-( such that L®" is very ample for Vn > n”, hence L®" is globally

generated for Vn > n”, and thus L®" @ L’ is globally generated for Vn > n' 4+ n”(by g.g.® g.g.
is g.g.). O

Chapert VIII Quasi-coherent and Coherent Sheaves
References:
(1) [Har77] Chapter II, §5.
(2) Mumford Chapter III, §1, §2.

(3) [Mus] Chapter 8.
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21.1 §A. Sheaves of Modules: Definition and Examples

(1) Recall: definition

Definition 21.2 (Sheaf of Ox-modules). Let (X, Ox) be a ringed space. A sheaf of Ox-
modules is a sheaf of abelian groups .# such that for any open subset V' C X, we have a
['(U.Ox)-module structure on .% (U) and these structure are compatible with restriction maps:

for any open V' C U, we have
(a-s)ly =aly-sly Vael(U,Ox)and s €.7(U,Ox)
Remark 21.3.

(1) A sheaf of Ox-modules .# is locally free <=-: 3r € Z., there exists an open covering

X = UU; such that F|y, >~ O as Ox-modules, moreover, we have

{locally free sheaves} «— {vector bundles}

(2) The quotient of a locally free sheaf may by NOT locally free!
(2) Ideal sheaves

Definition 21.4 (Sheaf of ideals). (X, Ox) a ringed space. A sheaf of ideals on X is a sheaf
of Ox-modules .#, which is a subsheaf of Oy, i.e. YU C X an open subset, I'(U, %), I'(U, .9)
is an ideal of I'(U, Ox).

Example 21.5.

(1) (X,0Ox) is a variety, Z C X a closed subset. Define the sheaf of ideals .#; associated to Z

as following:

LU, Fz) ={s € I'(U,Ox)|s|znv =0} for YU C X an open subset
(2) X =A%, x=1(0,0) € X. Consider the sheaf of ideal .7, (z1,x3) coordinate of A7, see that

Ox ¥ #
the stalk (.%,), = a 4

(1, 12) - Ox 4 ¥ =x

In particular, .#, is NOT locally free!
(3) X =A%, x=(0,0) € X. Define a sheaf of ideal .# as following:

e v ¢ U C X open subset, I'(U, .#) = I'(U, Ox).
e z € U C X open subset, ['(U, .#) = {s € ['(U, Ox)|s, € m?}

82



Ox . ' #x
See that stalk .Z, = * 7

2 2 /
(7, X129, 25) - Ox 2 =z

(4) X an irreducible normal variety, D an effective Weil divisor. Recall we have defined Ox(—D)

as following
VU C X open subset, I'(U, Ox(—D)) = {0 # ¢ € K(X)|div(¢)|y + (—D)|y > 0} U {0}

As D is effective, hence I'(U, Ox(—D)) C I'(U, Ox) is an ideal(you may use the property of
DVR), and thus, Ox(—D) is a sheaf of ideals.

Fact 21.6. If D = Y"" | D, with D; distinct prime divisor. Then Ox(—D) = #p as U}, D; is

closed in X. Since for any open subset U C X, we have
I'(U, p) ={s € I'(U, Ox)ls|unp = 0}
which means div(s)|y — D]y > 0, hence #p C Ox(—D). On the other hand,
D(U, 0x(~D)) = {0 # 6 € K(X)|div(6)|y — Dl >} U {0}

which means ¢ € I'(U, Ox ) and ¢|pry = 0, hence I'(U, Ox (—D)) € I'(U, #p).
In all, I'(U, #p) = I'(U, Ox(—D)).

(3) Algebraic operations of sheaves of Oy-modules

(a) Tensor product

F R0y 9 is the sheaf associated to the presheaf U — I'(U, %) ®rw,o) I'(U,9).

(b) Direct sum
The sheat # &9 : U — I'(U,.7) ® I'(U,¥)(it is already a sheaf).

(c) Symmetric power

For m € Zo. Sym™ .7 is the shaef associated to the presheaf U — Symp(y o) ['(U, 7).

(d) Exterior power

For m € Z~y, N"™.% is the sheaf associated to the presheaf U /\’F”(U’OX)F(U, F).

(e) Hom-sheaf

Homp (F,9) : U Homo |, (F|v,9v).

(f) Dual sheaf

F* = Homp, (F,0x).
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Remark 21.7.
(1) Taking stalks commutates with tensor product, direct sum, symmetric power, exterior power.

(2) #om-sheaf is ‘very bad’ ! It does not commutate with taking stalk. In particular, we have

(77) # 7!

Recall 21.8. Recall that the constant sheaf A is the sheafification of the constant presheaf

whose value is A, moreover, A, the stalk of A at z, is A.
Example 21.9. X = [0, 1] with cofinite topology. Ox = Z constant sheaf, 0 € X.
(a) .# = skyscraper sheaf Z, at o, consider s omg (Z,|y, Z|y) = Oleft

(b) #,9 = extension of the constant sheaf Z on X\ {o}. .%, = ¥, = 0, hence Hom (.%,,%,) = 0.
But Hom(Z,7Z) € Hom (.%,%),.

(4) Base change
f:(Y,0y) — (X,Ox) a morphism of ringed space.

(a) Let .# be a Ox-module. The pull-back f*.% is a sheaf of Oy-modules on Y defined as

following:

(i) f#*:0Ox — f.Oy induces f~1Ox — Oy i.e. Oy is a sheaf of f~*Ox-module.

(i) Then Ox-module structure induces a f~'Ox-module structure of f~1.Z.
Then f*f = f_lﬁ ®f710X Oy.

Caution 21.10. f* # [ f* = (®;-10,0y) o !, where of ! is an exact functor and
®f-10,Oy is NOT exact in general.

(b) Push-forward

Let 4 be a Oy-module. For YU C X open, I'(U, Ox) I, L(f~'U,Oy) and T (f~'U,9)
has a I'(f7'U, Oy)-module structure, see that ['(f'U,¥4) = ['(U, f.¥4), hence it has a

['(U, Ox)-module structure, which means f.¥4 is a Ox-module.
Proposition 21.11 (Exercise). (X, Ox) SN (Y, 0y) -4 (Z,0z) morphisms of ringed spaces.
(1) (gof), =gso fu
(2) (gof) =frog"

Remark 21.12. f: (Y,Oy) — (X, Ox) morphism of ringed spaces.
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(1) Pull-back of sections

Let .7 be a Ox-module. Then, VU C X open, we have
LU, Z) = T(fU, 7)) = T(f7'U, fF)

by
s> s=s®1
In particular, we have I'(X,.%) — I'(Y, f*.7).
(2) Pull-back is compatible with direct sum, tensor product, exterior power, symmetric power,

e.g.
(T oY) [ (F ®oyY =T o, ['Y)

But, pull-back is NOT compatible with 5Z°om!!

(3) Push-forward is also ‘very bad’ It is not compatible with algebraic operations.

21.2 §B. Quasi-coherent Sheaves on Affine Varieties

X = affine algebraic variety, A = I'(X, Ox) the coordinate ring of X.
(1) Definition

Recall 21.13 (Localization of A-modules). Let M be an A-module.

(1) Vx € X, define M, = M,, = M ®4 A,,, where p, C A is the ideal of z i.e. p, = {f €
Alf(z) = 0}.

(2) 0# f e A, define My =M ®a Ays.
Remark 21.14.

(1) The elements of M, is a formal fraction

{%VneM,nEZzo,feAandf¢Pz}/N

where
m m / / ‘
TN—f, <= Jg € A such thatg € p, and g(f'm — fm') =01in M.

(2) The elements of My is a formal fraction

{%MI’L S M,TL € Zzo}/f\/

where

m m/

F ~ F <= dr € Z>¢ such thatfr(f”/m —f™m')=01in M
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Clearly, we have a natural morphism: V0 # f € A

My — M, zeD(f)CX

Hii
fr fr
Definition 21.15 (Ox-module associated to M). Let M be an A-module. Then the Ox-

module M associated to M is defined as following:

by

YU C X open, U s I'(U, M) = {s U | | Mx}
zelU
where s(x) € M, for any . And for any = € U, there exists 0 # f, € A such that f,(z) # 0

and m, € M, n, € Z>o such that s(z’) = & for any ' € D(f)NU.

Lemma 21.16.

(1) Ox = A as A-module.

(2) Forany 0#£ f € A, T (D(f), M’) = M.

Definition 21.17. Let X be an affine algebraic variety. A =I'(X, Ox), .-# a Ox-module.

(1) .# is called quasi-coherent if there exists an A-module M such that . ~ M as Ox-

modules.

(2) .Z is called coherent if there exists a finitely generated A-module M such that .# ~ M as

O x-modules.
(2) Algebraic operations of modules
Proposition 21.18. Let X be an affine algebraic variety. A =I'(X, Ox).
(i) {M;},c; a family of A-modules.
(G;G\I]/Wl) = Bier M;

(ii) M, N two A-modules.

(M ®4N)=M @0, N.
(iii)) M an A-module, p € Z~,.
(A" M) = AP M.

(iv) M an A-module, p € Z~,.

(Sym? M) = Sym” (]TJ/)
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(v) ¢ : M — N a homomorphism of A-modules ~~ q~5 : M — N morphism of Ox-modules.

—~—

Then m = ker (5), im (¢) = im (5), coker (¢) = coker (5)

Proposition 21.19. Let X be an affine algebraic variety. A = I'(X, Ox). Let M, N be two
A-modules. Then

r (X,%omox (M,N)) = Homp, <M,N> = Homu (M, N)

In particular, if M is a finitely generated A-module, then Hom (M, N) = S ome, (M, ﬁ) ,

i.e. Hom commutes with sheafification of modules only if the source space is finitely generated!!
Proof.
e Given ¢ € Homp, (M, N), then px : T’ <X, M) —T <X, N) = px € Homy (M, N).

e Given ¢ € Homy (M, N), then ¢ : M — N is morphism of Ox-modules, we have
by
m ., em)
I fm
is a homomorpihsm of I" (D(f), Ox)-modules, which is A-modules.

e Assume that M is finitely generated. We need to show that Homy (M, N) = S ome, <M , N > .

It is enough to show that JZomp, (M , N ) is quasi-coherent. Then we need to prove that for
any 0 # f € A, we have

22 Lecture 22.

22/11/21.
(3) Base change
Let (f, f#) : (Y,Oy) — (X,0Ox) be a morphism of affine algebraic varieties. A = I' (Y, Oy),
B =T (X,0x). We have
f*:B— A
by

s sof
Proposition 22.1.

(1) Let M be an A-module. Then fuM = M, where the first one is the sheafification as an

A-module, the second one is the sheafification as an B-module.
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(2) Let N be an B-module. Then f*]v = Niéb\B/A, where the first one is the sheafification as

an B-module, the second is the sheafification as an A-module.
Remark 22.2. Let f:Y — X be a morphism of affine varieties.

(1) .Z is a auasi-coherent(resp. coherent) Ox-module, then f*.% is quasi-coherent(resp. coher-
ent).

(2) ¢ is a quasi-coherent Oy-module, then f.¥ is quasi-coherent.

(3) But, even though ¢ is coherent, f.%4 may be NOT coherent, because if we have B — A, M

is a finitely generated A-module, we can not get M is a finitely generated B-module.

22.1 §C. Quasi-coherent and Coherent Sheaves on Varieties

Definition 22.3. Let (X,0Ox) be a variety. A sheaf .# of Ox-modules is called quasi-

coherent(resp. coherent) if

(1) there exists an affine open covering X = J,.; Us.
(2) Vi eI, #|y, is quasi-coherent(resp. coherent).
Remark 22.4.

(1) U C X open subset of a variety. .# is an Ox-module, then Z |y := i*# = i~ %, where
i : U — X is the natural inclusion, see that both i*.% and i~1.% has a structure of Ox-

modules.

(2) Let .# be a sheaf of Ox-modules over a variety (X, Ox). Then .Z is quasi-coherent(resp.
coherent) <= for any U C X affine open subset, .#|y is quasi-coherent(resp. coherent).
In particular, if X is affine, then the definition above coincides with the one given in the

previous section.

Idea of the proof: [[Har77] , II, Prop. 5.4] Without loss of generality, we may assume
X = U is afine. X = UD(f;) such that .#|p,) is quasi-coherent(resp. coherent) for
0# fie A=T1(X,0x). Set M = I'(X,.#). Then there exists a natural morphism of
Ox-modules M — Z. It is enough to show

r (D(fi), JTI) = My, ~T (D(f,), )
Example 22.5.

(1) Ox is coherent.

(2) A locally free sheaf is coherent.
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Proposition 22.6 (Closed under algebraic operators). Let (X, Ox) be a variety.

(1) {F;}icr a family of quasi-coherent sheaves, then @;¢;.%; is quasi-coherent.

(2) {Z:}ier a family of coherent sheaves + [ finite = @;c;.%; is coherent.

(3) F, ¥ quasi-coherent(resp. coherent), then .# ® ¢ is quasi-coherent(resp. coherent).

(4) Z quasi-coherent(resp. coherent), then A”.# and Sym?.Z is quasi-coherent(resp. coher-

ent).

(5) ¢ : F — ¢ a morphism of quasi-coherent(resp. coherent) sheaves, then ker(¢), im(¢) and

coker(¢) are quasi-coherent(resp. coherent).

(6) .Z coherent, ¥ quasi-coherent(resp. coherent), then s#omp, (%,¥) is quasi-coherent(resp.

coherent).

(7) f:Y — X a morphism. .Z# is a quasi-coherent(resp. coherent) Ox-module, then f*.7 is

quasi-coherent(resp. coherent).

(8) f:Y — X a morphism,. ¢ is a quasi-coherent Oy-module, then f,¥ is quasi-coherent.
Proof. 1t follows from the properties over affine varieties. Il

Example 22.7 (Push-forward of coherent sheaves). Y = Al X =pt. f:Y — X. Then
f:Oy =T(Y,0y) = k[T] and Ox = k. But k[T] is NOT a finitely generated k-module.

22.2 3§D. Quasi-coherent and Coherent Sheaves on Projective Vari-

eties

(1) From graded modules to quasi-coherent sheaves
Let X C P" be a projective variety. Then the homogeneous coordinate ring of X is defined

R = k[zg,...,zn]/I(X)

where (X)) is the homogeneous ideal of X, then R is a Z-graded ring.

Remark 22.8. R depends on the embedding of X!! See for instance P" and its Veronese
embedding
vg: P — PY

Definition 22.9.
(1) A graded R-module M is a R-module with a decomposition M = @;czM; such that
Sa-M; CMirq, de€”Zso, 1€Z
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(2) Given a graded R-module M, we define a Ox-module M as following: for VO # F € R a

homogeneous element, then we have

open

X D D(F)»—>F<D(F)7M> = M)

where

m
Mgy = {ﬁ degm = n~deg(F)}/~

and
m m’

T~ e <= dr € Z>¢ such that F" (F",m—F”m'> =0in M

Proposition 22.10.
(1) Ox = R as a graded R-module.
(2) For V 0 # F € R a homogeneous element, then
M| p(r) = Mg
where view ]/\4\(;) as a R(p-module, and Rpy =I' (D(F), Ox).
(3) M is a finitely generated R-module, then M is coherent.
Remark 22.11. The converse of (3) is NOT true in general.

Example 22.12. Let Y C X C IPka be two projective varieties with Ry and Ry the homogeneous
coordinate rings, respectively. Then there exists a natural suejective homomorphism Ry — Ry.
Let Iy be the kernel. Then we have

0 > ]3/ > ]%)( > }%y' — 0

as Rx-modules. Then it induces an exact sequence of Oy-modules

0 s Iy s Ry >Jf%;—>0

which is exactly

0 > Sy > Ox > 1,0y —— 0

Lemma 22.13. Let ¢ : M — N be a homomorphism preserving degrees bwtween R-modules.
Assume ¢, : M,, — N, is surjective for V n >> 0, then ¢ : M — Nisa surjective morphism of

sheaves.
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Proof. For 0 # F € R a homogeneous element, it is enough to show
o) - Mry = Nr)
is surjective. Consider £ € N(py, then there exists s € Z-( such that F*y € im(¢) and hence

y F°-y
ﬁ: Fs+r GIIH (SD(F))

(2) From quasi-coherent sheaves to graded modules

Definition 22.14. Let M be a graded R-module. Given d € Z, then the graded R-module M,
M (d) is defined to be M with the shifted grading M (d),, := M, 4.

Definition 22.15. Let X C P} be a projective variety with homogeneous coordinate ring R
and i : X — PY.

(1) Ox(d) := Opy(d)|x :=7"Opn(d) is the sheaf associated to R(d).

(2) If Z is an Ox-module, then % (d) = ¥ ®o, Ox(d).

Remark 22.16.

(1) Ox(d) = i*Opy(d) over D(F), I' (D(F), Ox(d)) = homogeneous of degree d in Rp, i.e. £
with degG =d+n-degF.

(2) If M is a graded R-module, then ]\m = M@)ox Ox(d).

Definition 22.17. Let .# be a quasi-oherent sheaf on a projective variety X C P&. Define a
graded R-module as I',.# 1= @yezl" (X, Z(d)) with module structure coming from

I'(X,0x(d) T (X, Z#(d)) »T(X,Z(d+d))
Remark 22.18. [',.7 depends on the embedding of X into P{'!!
Proposition 22.19. Let .# be a quasi-coherent sheaf on a projective variety X C Py.
(1) 0.7 ~ .F as Ox-modules.
(2) Z is coherent if and only if I',.% is a finitely generated R-module.
Remark 22.20.

(1) If # = M for some graded R-module M, then M may be NOT isomorphic to I',.%.

(2) there exists a natural homomorphism
Iy: Md%F<X,m>
by

m
m— —
1

for all d € Z. But, ingeneral, I'; is neither injective nor surjective.
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23 Lecture 23.

22/11/23.

23.1 SE. Back to Locally Free Sheaves

Let (X, Ox) be affine algebraic variety. A Ox-module .# is locally free of rank r if there exists

an open covering X = Use;U; such that Z |y, ~ OF'.
Remark 23.1.

(1) We may assume that U;’s are affine.

(2) Locally free sheaves are coherent as |y, = AY", A; = T'(U;, Oy,), U; affine.
(1) Relation with projective modules

Recall 23.2 (Projective A-modules). An A-module M is projective if V surjective homomor-
phism of A-modules g : P —+ N and a homomorphism of A-modules h : M — N, there exists
h: M — 9§ such that h = g o h.

Proposition 23.3. Let (X, Ox) be an affine algebraic variety, let A =T (X, Ox) and let M be
a finitely generated A-module. Then M is locally free or rank r if and only if one of following
holds:

(1) there exists fi,..., fm € A such that My, is a free Ay,-module of rank r and (1) = (f1, ..., fim)-
(2) Vz € X, ]\Afx is a free Ox z-module of rank 7.

(3) M is a projective A-module.

Proof. See [D - Eisenbud, GTM 150, Thm A.3.2]. O
(2) Fibres and Nakayama’s lemma

Definition 23.4. Let (X, Ox) be an algebraic variety, .% is a coherent sheaf over X, x € X a
point. The fibre of .# at z is defined as

where .%, is the stalk of .# at x and m, is the maximal ideal of Ox .
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Remark 23.5.
(1) iy : @ — X the natural inclusion. Then % (z) = .77 the left is an algebra, the right is a
sheaf
(2) Z(x) is a k-vector space given as following:
Oxz./my ~ k — F(v) = F,/m,.F(x)
dimy, Z (z) < 400 as .Z is coherent. e.g. let .# be the sheaf of sections of a vector bundle
V of rank r. Then
(a) F(x) =1V, = fibre of V over x = k".
(b) F. = 0%,
Proposition 23.6 (Nakayama’s lemma). Let (X, Ox) be an algebraic variety, and let .% be a
coherent sheaf over X. Then the followings are equivalent:

(1) .Z is locally free of rank r.
(2) F#, is a free Ox -module of rank r, for Vo € X.

(3) F(x) is a k-vector space of dimension r, for Va € X.

Recall 23.7 (Nakayala lemma). Let A be a local ring, m = maxiaml ideal of A. M is a finitely
generated A-module. If my,...,m, € M are elements in M such that my, ..., m, € M/mM form
a A/m-basis, then my, ..., m, form a A-basis for M, e.g. any A/m-basis of M /mM can be lifted
to be a basis of M over A.

(3) Morphisms of vector bundles vs morphisms of locally free sheaves
Let Vi, V5 be two vectore bundles over an algebraic variety X. Let %1, %5 be sheaves of sections

of V1 and V5, respectively. Then there exists a natural injection
Homyect (V1, V2) < Homo, (F1, %)

where the left is the homomorphism of vector bundles and the right is the homomorphism of

Ox-modules.

Lemma 23.8. Let ¢ € Homp, (%1, %2). Then ¢ € Homye(V1,V2) <= V 2 € X, p(2) :

Fi(x) = Fo(x) is of canstant rank, i.e. the rank of the k-liner map is independent of z € X.
Example 23.9. V; = X x k, Vo = X x k, X = A}. Take
p:0x = Ox

by

SH—=T-S

At z =0, rank ¢(0) = 0, and rank p(z) = 1 for « # 0.
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(4) Pull-back of locally free sheaves

Recall 23.10. Recall that for [ : Y — X, f* = ®;-10,0y o f!, where ®-10, Oy is right

exact and ! is exact.
Proposition 23.11. Let f : Y — X be a morphism of varieties.

(1) (Compatible with pull-back of vector bundles).

Let V be a vector bundle over X. Let %, . %’ be the sheaves of sections of V' and f*V/,
respectively. Then ' ~ f*.7.

(2) (Compatible with pull-back of Cartier divisors)

Assume f is dominant and both Y and X are irreducible normal varities. Let D be a
Cartier divisor on X. Then f*Ox (D) ~ Oy (f*D). It is NOT true for D being a Weil

divisor because Ox (D) is NOT locally free in general.
(3) Let 0 = % — %5 — %3 — 0 be a short exact sequence of quasi-coherent sheaves on X.

(3.a) Let .# be another quasi-coherent sheaf. Then the following sequence
00— F1RTF — PR F —— F300.%F —— 0
is exact if either .# is locally free of all .%; are locally free.
(3.b) If all .Z;’s are locally free, then
0 —— f*F —— [*Fy —— [*F3 —— 0
Is exact.

Proof. (1) and (2) follows from the definition.

(3) follows from the following fact:

Let A be a Noetherian ring. Let 0 — M; — My — M3 — 0 be a short exact sequence of
A-modules. Let M be another A-module. Then the following sequence

0O —— MM —— Ma@M — Ms®@M —— 0

is exact if either M is a free A-module of finite rank or all M; are free A-modules of finite

rank. []
(5) Relations between coherent sheaves and locally free sheaves
Proposition 23.12. Let .% be a coherent sheaf over a variety X.

(1) (Generic freeness)

There exists @ # U C X open subset such that % |y is locally free.
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(2) (Serre)

If X C PY is a projective variety, then there exists finitely many n; € Z with a surjective
morphism

i.e. Z is a quotient of some locally free sheaf over X.
Idea of the proof of (2): Find n >> 0 such that .%(n) is globally generated i.e. I' (X, .#(n))®

Ox — Z(n) is surjective. Then r = dim; I' (X, .#(n)) < +o0, hence &]_,Ox(—n) - Z.

23.2 S§F. Differectials and Cotangent Sheaf

(1) Kéiler differential

Definition 23.13. Let R be a k-algebra. We define 2y to be the free R-module generated by
the formal symbols df for all f € R, modulo the relations:

(1) d(f +g) =df +dg,V f,g € R.

(2) d(f-g) = fdg+gdf, ¥V f,g € R

(3) df =0.V f ek

Then elements of Qp are called (Kéhler) differentials of R(over k).
Example 23.14.

(1) R = k[z1,...,z,). Then df = g—jldxl + -+ %dmn by (1) + (2) + (3) for V f € R. Hence
Qr = Rdz, & - - - & Rdx, and we can regard 2 as liner forms on the Zariski tangent space

T, A} of A} which depend on x algebraically. More precisely,
zZar __ AMm n df

by

(x, (v1,..e, Up)) g—xfl(m) S @axj; () - vp

(2) In general, let R = k[z1, ..., 2,])/I(V) be the coordinate ring of affine algebraic variety V' C
A}. Assume that [(V) = (Fy, ..., F,). Then

Qg = (Rdzy @ - -+ ® Rdz,) /{dF},...,dF),)

and the elements of (2 can be viewed as linear maps defined on 7,,V, p € V which depend

on p algebracially,
TZ" cVx k" %k feR
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by

(1) = () v ()

Recall from [Chap IV. §C.], for V f € I(V) = (F1, ..., F,), then

(mwwzo

hence Qp = Rday @ - - @ Rda,/{df, f € I(V)) = Rday & - @ Rda,/(dF;, 1 <i < 7).

Let p € V be a point with m, C I(V) C R be the maximal ideal. Then

Qp ®r R/m >~ (kdx, @-««@kdmn)/< g %(p)d:cj, 1<i< r>
J

j=1

is a k-vector space with dimension dim(7},V —p) and we can regard Qp®zR/m as Homy, (T,V — p, k) =
Q).

24 Lecture 24.

22/11/28.

References for differentials:

1. [Har77] , 1L, §8.
2. [Mug] , §8.7.

Reference for generic freeness:

H. Matsumura. Commutative algebra, lemma 22.1.
(2) Cotangent sheaf of P"

Proposition 24.1 (Euler sequence). For n € Z.q, the cotangent sheaf Qp» of P" is determined

by an exact sequence:

f

0 » Qpn > Opn (=121 L5 Opp —— 0

Proof. Step 1. Construction of f.

Consider 4,57 € {0,1,...,n} with ¢ # j. Then the regular function ;‘—J e I'(Uj, Opn),
where U; = D(z;). Then Left
O

Remark 24.2. Taking dual yields

0 > Opn > Opn (1) —— Q% —— 0

then tensoring with Opn(—1) yields:
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0 —— Opa(—1) —1 Ot —— Q% @ Opn(—1) —— 0

where f is the natural morphism in the definition of Opa(—1), i.c.
Opn(—1) = {([l],v) e P" x C"™ |v e} CP" x C"*L.

and O is the trivial vector bundle P" x C"*1.

(3) Canonical bundle

Definition 24.3. Let X be a variety, n = dim X.

(1) The tangent sheaf Tx is defined as Q%.

(2) If X is irreducible and normal, we define the canonical bundle wx as (A" Qx)*

Remark 24.4.

(1) In general, T # Qx. We lose many informations of X by taking dual of Q2x. However, if X
is nonsigular and irreducible, then 7y = Qx = Q¥ and Tx is nonsigular which is the sheaf

of sections of the usual tangent bundle.

(2) In general, wy is not locally free, by=ut as X is normal and irreducible, thus there exists
Z C X of codim Z > 2 such that wx|y = A" Qx|v = A" Qu = det (Qx).

Example 24.5 (Canonical bundle of P").

Fact 24.6. Let 0 — . % — & — ¢ — 0 be a short exact sequence of locally free sheaves. Then
det(&) ~ det(.F) @ det(¥).
Appling it to Euler sequence of P™:

0 y Qpn > Opn(—1)%" ——— Opn —— 0

We have det (Opn (—1)®") =~ wpn ® Opn, and thus Opn(—n — 1) > wen.

[X Cohomology of Coherent Sheaves

24.1 §A. Céch Cohomology

(1) Motivation for shef cohomology

(a) For a short exact sequence 0 — %, — F5 — 3 — 0 of sheaves on a topological space X.

The induced morphisms
0 —— F(X,tgal) — F(X,aozg) — F(X“%%)
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We denote it by (*) in short, (*) may be NOT surjective at the right hand side in general. So
we can NOT get much informations about I'(X, .%#3) by (*). Cohomology gives a natural way
to extend this sequence to the right. We will construct naturally defined groups H'(X,.%)

for any sheaf .7 on X and i € Z5( such that there is a long exat sequence

0—=T(X, %) = T(X, %) = T(X, %)
— H'(X, ) = H'(X, ) — H'(X, F3)
— H*(X, %) = H*(X, %) — H*(X, F3)

— e

(b) If X is a variety and .% is a coherent sheaf, then H'(X,.%) is a k-vector spavce. Hence,
apply this to the canonically defined coherent sheaves on X, e.g. Ox,Qx,Tx,wx... The
dimensions of the cohomological groups of them are important intrinsic invariants of X

which can be used to distinguish varieties.

(2) Céch Cohomology
Let X be a topological space. % = (U;);er is an open covering of X. I is a well-ordered index
set. Let .Z be a sheaf of abelian groups on X. (ig,...,i,) € I?™ the intersection of U, for

1=20,1,...,p, is denoted by U;

0.rip

Definition 24.7. For each p > 0, we define

e, 7)= 1] WU, 7
10<...<ip

ie if a € CP(%,7), then we have a = (.., )iy<..<i, With a;y._;, € T'(Ui,..4,, F ).
We define the coboundary map

8, : CP(U, F) — C** (U, F)

p+1
—(a. ). A E _1)k ~
O‘—(am---zp)m<.--<zp’_> (-1 Xi..ipripr1 Wigeippa
10<

k=0
Example 24.8. X = Uy U U; U Us.

U, F) = (S = (S0, 51, 5)|Ss € T(Us, F)}.

CH U, ) ={(So1, 502, 512)|Si;; € T(U; N U;, F)}.

C* %, F) = {So12|So12 € T(Uy N U, N Uy, F)}.

O(S) = (So1, Soz, S12), where

Sor = (=1)°St|vonuy + (=1)'Solvenu, = (St — So)|venu; -
Soz = (—=1)°Sa|vonw, + (=1)'Solvenu, = (S2 — So)|venvs-
S12 = (=1)°Salvinws + (=)' Stluinwe = (S2 — S1)|vinee-
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Lemma 24.9. 9> = 0.
C*(% ,#) = complex obatined as above.

Definition 24.10. Let X be a topological space and let % be an open covering of X. For any
sheaf of abelian groups .# on X, we define the p-th Céch cohomology group of .% with respect to the cover

to be Kerd
HY(U, F) = H(CNU , F)) = —F

~ Im Op—1

Proposition 24.11. The canonical map I'(X,.%) — H°(%,.%) is an isomorphism.

Proof. Just by definition of sheaf. ]

25 Lecture 25.

22/11/30.

References for cohomologies:

(1) [Har77] , 111, §1-5, §7.

(2) Mustata, Chapter 10, Chapter 14.

25.1 §B. Brief Introduction of Right Derived Functors

Definition 25.1. Let &/ be an abelian category.
(1) An object I € o/ is injective if the functor Hom(—, I) is exact.

(2) Let A € o7 be an object. An injective resolution of A is an exact complex

40 dl
0 y A —=— [0 y I! y ™

~

such that I"™(m > 0) are injective objects.

(3) Let F': &/ — 2 be a covariant left exact functor of categories with &7 is an abelian category
having enough injective objects(every object in </ has an injective resolution). Then
the right derived functor R'F : o/ — % is a functor such that if 0 — A = I® is an
injective resolution of an object A € &, then R'F(A) = H'(F(I*)) for i > 0.

() - )

and we have
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F(e) F(d°) F(d)

F(I') sy F(I™) —— -+

0 —— F(A) F(I°

where is exact at F'(I°).
Remark 25.2.
(1) R'F(A) does not depend on the resolution 0 — A = I°.

(2) Let (X,Ox) be a ringed space. Then the category of sheaves of Ox-modules has enough

injectives.
Definition 25.3.

(1) Let (X, MOX) be a variety. Then H'(X, —) is the right derived functor of I'(X, —), i.e. V. a
quasi-coherent sheaf on X, taking an injective resolution 0 — % RNy A d—0> B4 d—1> Sy —> -,
Then

| Ker(T'(d"))
H(X,Z)= — )
(X 7) =t @)
and we have
e 0 1 2
0 —— 0(X,.7) — rx, 7)) 29 rix, ) B9 px, ) DY

which is exact at I'( X, .%).

(2) Let f:(X,0x) — (Y,0y) be a morphism between varieties. Then R'f, is the right derived

functor of f,, which are called the higher direct images.
Remark 25.4.

(1) H' = R'T(X, —) is a special case of R'f,(—): taking f : X — pt to be a constant map to a
point. Then f.(—) =T['(X,—).

(2) H(X, ) =T(X, 7).

25.2 §C. Comparing Céch Cohomologies and Sheaf Cohomologies

(1) Serre’s Theorem A and Theorem B

Theorem 25.5 (Serre, [Har77] , I11, §3). Let X be an affine algebraic variety, & a quasi-coherent
sheaf on X. Then

(1) F is globally generated.

(2) HI(X,#) =0 for ¥V q > 0.
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proof is left

(2) Leray’s Theorem

Definition 25.6. Let .# be a sheaf of abelian groups over a topological space X. Let % =
(U;)ier be an open covering of X. Then % is called .#-acyclic if for V ¢ > 0, V p > 0, and V
(ig, ..., 1p) € IPTL, we have

H(U, ;. F

Uio.“ip) =0

0--8p

Theorem 25.7 (Leray). Let F be a sheaf of abelian groups over a topological space X. Let
U = (U;)ier be an open covering of X.

(1) There exists a natural canonical functorial morphism, ¥Yq > 0.

HY%,F) — H{(X,F)

(2) If the covering % is F -acyclic, then this morphism (x) is an isomorphism.
Proof. [Har77] , III, Lemma 4.4 and Theorem 4.5 O

Corollary 25.8. Let X be affine algebraic variety, 7 an affine open covering of X, .% a quasi-

coherent sheaf of X. Then we have a natural canonical functorial isomorphism
HY % ,F) - HY(X,F)
for all ¢ € Z>y.

Proof. U,V C X be affine open subsets = UNV is an affine open subset of X (by separateness),
so % is F-acyclic. 0

25.3 §D. Calculation by Céch Cohomology: an example

In this section, we aim to use Leray’s Theorem to calculate the cohomologies of Oy, where
X = 1\ {0}.
(1) Kiinneth formula
Let K* and L® be two complexes of vector spaces over k. We define the complex K*®* ® L*® by
setting
(1) (K*oL) = @ KoL

pt+qg=n

(2) dz®y) =dr®y+ (—1)Px ® dy, where z € K? y € L1.
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The complex K* ® L*® is called the tensor product of K* and L*. We have a canonical linear
map
p: @ HY(K®) @ HYL*) - H"(K* ® L*)
pHq=n

defined as
(2] @ [y]) = [z ®y]

Proposition 25.9. The linear map p is an isomorphism.
proof is left

Remark 25.10 (Kiinneth theorem, general form). Let X,Y be two varieties and let %, ¢ be

quasi-coherent sheaves on X and Y respectively. Then

H'(X xY,pyZ @py¥9) = € H(X,Z)® H(Y,9)

pt+q=n

where

Hint: Eilenberg-Zilber theorem.

(2) Calculation of H4(A7 \ {0},0)
Let X = A7\ {0} and let (xg, 1) be the coordinate of A2. Uy = D(zg) € X. Then X = Uy UU,;

and Uy, Uy are both aavs.
0 —— CO(OZ/,O)() = F(Uo,X) @F(U1,0x) E— F(Uo N Ul,OX) — 0

by
(fag) = (.f _g)|UoﬂU1

Consider the complex K* defined as

0 (Ko ®Ko)0 \ (Ko ®Ko)1 (Ko ®Ko)2 0

0 — I'(X,0x) —— C%%,0x) —— CY(%,0x) —— 0

0 —— [(82,04) — T(U;, Ox) —— DUy N U1, Ox) — 0

Hartogs
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See that I'(A)

Left

(3) General case: X = A7\ {0}

Consider the affine open covering % = (U;)o>i>n, Ui = D(x;) € X. Then we have

HY(X,0x)=HYX,0x)=H"K*® - ® K*)
N ——

(n+1)-times

Hence

0 qg#0orn
Hq(X7OX) = k[ﬂfo,...,l‘n] q:O
k-vector space generated by —m—mm,m; >0 ¢=mn
xy Oy
Corollary 25.11. A} \ {0} is not affine for n > 2, because H" (X, Ox) # 0 for n > 2 and Serre’s

Theorem A and B.

25.4 SE. Calculation of Sheaf Cohomologies

(1) Grothendieck vanishing theorem

Theorem 25.12 (Grothendieck). Let X be a Noethrian topological space of dimension n, and
let F be a sheaf of abelian groups. Then

HI(X,Z#)=0 ifg>n
Proof. [Har77] , III, Theorem 2.7. O

Corollary 25.13. Let X be affine algebraic variety of dimension n. .# is a quasi-coherent sheaf.
Then

HY (X, 7)=0 ifg>n
(2) Finiteness
Theorem 25.14. Let X be a projective algebraic variety, F a coherent sheaf on X. Then
dim, HY(X, F) < 400, VqeZ
Proof. Reduce to projective spaces. [Har77] , III, §5.2. O
Remark 25.15.

(1) If X is not projective, then the theorem does not hold, e.g. H°(A}, Opn) = kl21, ..., Tp).
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(2) x(t) = Z(—l)q dimy HY(X,.Z(t)) is a polynomial in ¢, where .Z#(t) = #Z®Ox(t) and t € Z.

q=0
(3) Kodaira’s vanishing Theorem
Theorem 25.16. Let X be an irreducible nonsigular projective variety, £ an ample line bundle

on X. Then
H(X,wx®Z)=0, Vg>1

where wx = N\" Qx is the canonical bundle of X, n = dim X .
(4) Serre’s duality

Theorem 25.17. Let X be an irreducible nonsigular projective variety. Let F be a locally free

coherent sheaf on X. Then there exists a natural isomorphism
H (X, )~ H"(X,7* ®wx)
where i € Z>o and F* = A omo, (F,Ox) is the dual sheaf of F.

Corollary 25.18 (Cohomologies of projective spaces). Let n € Zso. Let S = k[zo, ..., z,] be
the natural Z-graded k-algebra.

(1) The natural morphism S — @ H°(P", Opn(m)) is an isomorphism of graded S-modules.

meZ
In particular, we have

S, m >0
HO(P", Opn(m)) =
0 m <0

(2) H(P",Opn(m)) =0,V1<i<n-—1,VmeZ.

S_men_1 m>-n-—1
(3) H*(P", Opn(m)) ~ H'(P", Opn(—m —n — 1)) = '
0 m>-n—1

Proof.

R

(1) H°(P", Opn(m)) = T(P", Opn(m)) = See [VII, §H].
0 m <0

(2) Recall that wpn = Opn(—n — 1), hence

HY(P", Opn(m)) =~ H" " (P", Opn(m)* @ wpn)
~ H" (P", Opn(—m) @ Opn(—n — 1))
~ H" ' (P", Opn(—m —n — 1))
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Hence, by Kodairas’s vanishing theorem, if —m > 0, n > 4, then H"*(P", Opn(—m — n —
1)) = 0. Thus if —m > 0 and n > 4, then

H'(P", Opn(m)) = 0 (1)
On the other hand,
H'(P", Opn(m)) ~ H'(P", Opn(m) ® wipn @ wpn)

HY(P",Opn(m +n+1) ® wpn)
=0 iftm+n+1>0andi>0

In all, H(P", Opn(m)) =0,V1 <i <n—1,Vm € Z. For i = n, using Serre’s duality.

26 Lecture 26.

22/12/05.
(5) Direct sum

Proposition 26.1. Let (%;);cr be a family of quasi-coherent sheaves on affine algebraic variety

X. Then we have a natural isomorphism for Vq > 0.

HY(X, 6P 7i) ~ P HUX, F)

iel iel
Proof. Take a suitable affine open covering of X and the use Céch cohomology or prove that

cohomology commutes with direct limit[[Har77] , II, Proposition 2.9]. O
(6) Long exact sequence

Proposition 26.2. Let X be affine algebraic variety. Let 0 - % — & — ¢ — 0 be an exact

sequence of coherent sheaves. Then we have a natural long exact sequence i € Z.
- —— H(X,¥) — H(X,8) — H'(X,Y) — H(X,F) —— -

Corollary 26.3 (Theorem A and B). Let X be an irreducible normal projective variety. Let &
be an ample line bundle on X. % a coherent sheaf on X. Then there exists an integer N > 0

such that for Vm > N, we have
1. . F ® £%™ is globally generated.

2. HY(X,.F @ £°™) =0, Vg > 1.
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Proof. Without loss of generality, we may assume that . is very ample. In particular, there

exists i : X < P¥ an inclusion as a closed subset and . = Opn(1)|x. Thus we may denote &

On the other hand, as .% is coherent and X is projective, there exists n;Z, 1 > i > s such that

there exists a surjective morphism

& Ox(ni) » Z [Chap. VIL § E|
=1

Proof is left
Corollary 26.4. We define h'(X,.%) := dim;, H (X, .%). Then

| n2+2m i=0
W (P, Tpn) =
0 i>0

Proof. Consider the Euler sequence:

0 > Q[Pn > O[Pn<_1)€|9n+1 E— O[Pn — 0

Taking dual yields:

0 > Opn > Opn (1) ——— Tpw —— 0

Take long exact sequence:
C— Hi([P",(’)[pn(l)@”“) — Hi(ﬂpn,ﬁn) — Hi+1(03",(9u>n(1)) _ .
0 0
For i > 1. Hence, we have H'(P", Tpn) = 0 for i > 1.

0 —— HOY(P",Opn) —— HO(P", Opn (1)) —— HY(P", Tpn) —— H'(P", Opn)
k 0
HO(P", Opn (1)) = @ HOP", Opn (1)) = SE™1 = BO(P", Opn (1)) = (n + 1)%
By the exact sequence, we have
ho([Pn,'Han) — ho([P", O[Pn(l)ean-i-l) _ ho([P", O[Pn)
=(n+1)2-1
=n?+2n
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Corollary 26.5 (Exercise). hi(P", Qpn) =

(7) Push-forward and pull-back

Proposition 26.6. Let i : Y < be a closed subvariety. Then for any coherent sheaves .% on Y

and ¢ on X, we have
(i) H(Y,.7) = H1(X,i..%), ¥Yq > 0.
(ii) " F = 7.
(iii) (projective formula) If ¢ is locally free, then we have
W FRiY) =179

In particular, if .# = Oy, we get i,i*9 = i,0y R Y.

Remark 26.7. Let ¢ be a locally free sheaf on X. We want to compute HI(Y,1*9).

(1)+(i17), we get
HUY,*9) ~ HU(Y, Oy @ 9)

Then we consider the following short exact sequence:

0 >fy >OX >i*0y—>0

Tensor it with ¢ yields:
0 — HRY — O0x®Y — .0y ®9 —— 0
Corollary 26.8. Let X C P"*! be a nonsingular hypersurface of degree d. Then

1 q=20
h(X,0x) =40 0<qg<n
hn+1(ﬂ3”+1, Ou:n+1(—d)) q=n+1

In particular, we have A" (P"*, Opn+1(—d)) = hO(P""!, Opnti(d — n — 1)).

Proof. Consider the short exact sequence:
00— Iy — Opntn — i,Ox —— 0

where i : X < P"*1. X is a prime Cartier divisor in P"*! of degree d. Then
fX = OPnJrl(—X) >~ Ou:n+1(—d)
Hence, we get LEFT
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26.1 SF. Serre’s GAGA Principle

k =C, X C P"(C) an irreducible normal projective variety.

X" = analytic space associated to X, which means X (as sets)+ Euclidean topology on X i.e.

P"(C) = U, U; where U; >~ A2 = C" with Euclidean topology on U; is the same as that on C".

X*" is a compact complex manifold.

Oxan = sheaf of holomorphic functions on X?*".

Then the identity map: Id™ : (X", Oxan) — (X, Ox) is a morphism of locally ringed spaces.

Let .Z be a coherent sheaf on X. Then the analytic sheaf . 7" associated to .% is defined as

ﬁan = (Idan>*¢g; = (Idan)_lﬁ ®(Idan)—lox Og‘?

Fact 26.9.

(1) F — Z* is an exact functor.

(2) Z?" is an analytic coherent sheaf. Ref: Demailly. Complex Analytic and Differential 11, §3.
IV. Sheaf Cohomology.

Theorem 26.10 (Serre, GAGA principle). Let X be an irreducible normal projective variety.
Let X be the analytic space associated to X. For F a coherent sheaf on X, let F ™ be the

analytic sheaf associated to F .
(1) Yq > 0, there exists a canonical isomorphism
HIX,Z)~ H{(X™ F™).
(2) If F and & are two coherent sheaves, then there exists a canonical isomorphism

HOIIlOX (ﬁ, g) =~ Hom@g(n(f‘m, gan).

(8) For any analytic coherent sheaf on X", there exists a unique coherent sheaf F on X such
that
F~ &,

Corollary 26.11 (Chow). Let X C P*(C) be a compact complex manifold. Then X is projec-

tive.

Proof. I < Opn.an, where #¢" is the analytic ideal sheaf of X. By Oka’s coherence Theorem,
& and Opnan are coherent. By GAGA principle, both 3" and Opn.an come from algebraic

coherent sheaves, i.e. there exists

jX > OﬂDn

analytic\% éanalytic

f)a(n (—> O[Pn,an

Hence, X = Supp(Opn.an/FE") = Supp(Opn / Fx) is algebraic. O
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27 Lecture 27.

22/12/07.

28 Lecture 28.

22/12/12. (5) Second example of projective morphisms: blowing-up

Construction I—(Blowing-up at a finite set of regular functions)

Let X C A} be an affine algebraic variety. For some given regular functions fi, ..., f, € I'(X, Ox)
on X, weset U=X\V(f1,..., fr). As fi,..., - then do not vanish simultaneously at any point

of U, there is a well-defined morphism
f:U—=P!

by
e [filz) - fr(x)]

We consider its graph
Ip=={(z,f(z) eUxPHzeU} CUxP

Then I'; is closed in U x P™!, but in general NOT in X x P"!. The closure of I'; in X x P™!
is called the blowing-up of X at fi,..., f.. We usually denote it by X C X x P! and there

is a natural projective morphism 7 : X — X to the first factor.

Remark 28.1 (Exceptional sets).

(1) Let f: X — Y be a birational morphism. Let U be the largest open subset of ¥ such that
f~YU) — U is an isomorphism. Then the exceptional set Ex(f) is defined as X \ f~(U).

(2) Let 7 : X — X be the blowing-up as Construction I. Then 7 induces an isomorphism
I'y — U. In particular, Ex(m) C X\ 7 HU).

(3) For r =1, i.e. the blowingup of X at one regular function f, if X is irreducible and f # 0,

the 7: X — X is an isomorphism:
open
I} € XxP'=X
Which means Ty in X x PP = X x P0 = X by irreducibility.

(4) The blowing-up X CXxPlof Xat fi, ..., - satisfies

X C {(x,y) e X x [PT_1|yifj(m) =y;filr), V1<ij< r}
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Example 28.2 (Blowing-up of A} at coordinate functions). Let 7 : ZAE — A} be the blowing-up
of A} at Xy, ..., X,,. Then

Ay = {(2,y) € AL x P"Hyiwy = yja; V1<4,j<n}:=Y

Claim: Y = ZA\}E
Proof of the claim: Consider the affine open subset U; = {(z,y) € A x P""!y; = 1}. Then
YNU = {X; =X1Yjli =2,...,n} because V;X; = Y; X Y; = X,Y;, Vi,j. There exists an

isomorphism:

A Y AT
by
(x17y27 ayn) = (5171,1‘19% 7x1yn)[]' Y2 i yn]

The same holds for the open subsets U; of Y where y; = 1, i = 2,...,n. Hence Y is covered by
YNU; ~A and (1,..,1)[1:---: 1] ent (Y NT;)
= Y is irreducible and ¥ = A7,

29 Lecture 29.
22/12/14.

Fact 29.1 (Blowing-up depend only on ideals). The blowing-up of affine algebraic variety X at
fi, fr € A(X) = T'(X,Ox) depends only on ideal I = (fy,..., f;) € A(X) i.e. if f],..., fl €
A(X) such that (f{,....f)) =T andlet 7 : X — X and 7’ : X’ — X be the blowing-up of X at

fi, .., fr and f{, ..., f! respectively. Then there exists a unique isomorphism g : X = X fitting
in the following commutative diagr[AM94]

X o X/
X

Construction II—(Blowing-up at ideals)

(a) Let X be affine algebraic variety. Let I C A(X) be an ideal. The blowing-up of X at [
is defined as the blowing-up of X at any finite set of generators of I.

(b) Let X be affine algebraic variety. Let Z C X be a closed subvariety. The blowing-up of
X at Z is defined as the blowing-up of X at I(Z) C A(X). In this case, we also call Z the

centre of the blowing-up.

Example 29.2.
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(1) (Blowing-up of A} at (0,...,0))

Let 7 : ZA;};‘ — A7 be the blowing-up of A7 at (0, ...,0). Then A = {(z,y) € A X P ey =y, 1<
and £ = 7 1(0,...,0) = (0,...,0) x P! C ZA\;;‘, where dimP"! = n — 1 and dim@ = n.
%\ﬁ N{Y; # 0} := U; ~ A}, consider

A5 AP subseteqhy x PP AR

(2’1, ,Zn> = (3121', s Zi—1%45 Ziy Zi41%4, ---,ZnZi)[Zl peeerziir il iz e Zn]

ENU; =pr; }0,...,0) = {z; = 0} C A?. Geometrically, the blowing-up separates the lines
passing through the origin by sending the point = € [ to (z,[l] € P(k") = P"') € Ap x P~ L.

(2) (blosing-up of A} at a linear subspace)
Let 7 : ZAE — A} be the blowing-up of A} at V(xy,...,x,) C A}. Then

@:{(I7y) GAZX H:)T_1|x2y]:xjy’w 1§Z7]<T

which means
7V (zy, oy m,)) = Vi, ..oz,) x PTLC AT

dim=n-1 dim=n

Construction ITI—(general case)

Let X be a variety, .# C Ox an ideal sheaf. The blowing-up 7 : X - X of X at .# is
a surjective proper birational morphism such that if X = UU; is an affine open covering and
I |v. = I;, where I; € A(U;) is an ideal, then

ﬂ_’ﬂ'_l(Uz‘):ﬂ'_l(Ui)—)Ui

is the blowing-up of U; at I;.

Basic properties of blowing-up
Proposition 29.3.
(1) The blowing-up exists.

(2) The inverse image ideal sheaf #' = 7717 - O is an invertible sheaf and is 7-ample. In

particular, 7 is projective.

(3)

30 Lecture 30.
22/12/19.
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31 Lecture 31.

22/12/21.

32 Lecture 32.

22/12/26.
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