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Part I

Algebraic Geometry I
22/8/29 to 22/10/26.
Lecture 1 to Lecture 14 and a part of Lecture 15, but actually, I put this part into Lecture 14.
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1 Lecture 1.
22/8/29.

1.1 §A. What is Algebraic Geometry?

• Objects: set of solutions of finitely many polynomials in several varibles.

Example 1.1.

(1) Nodal curves: X3 + Y 3 −XY = 0, see the local of the singular point is a ’cross’.

(2) Cuspidal curves: Y 2 −X3, the local is a cusp.

(3) Elliptic curves: Y 2 −X(X − 1)(X − 2), it consists of two parts.

(4) let k be Q, consider Q2, the rational plane, and X2 − aY 2 − 1 with a ∈ Q, called Pell
equation, and the solutions are ( t2+a

t2−a ,
2t
t2−a), in particular, see the circle case which we have

known the rational solutions before.

• Relations:

(1) k = R related to differential geometry.

(2) k = C related to complex geometry.

(3) k = Q, Fp related to number theory.

• Solve Problems

(1) Classfication(up to some equivalence).
e.g. MMP, thanks to Mori, we go to higher-dimensional geometry.

(2) Topological Properties.
e.g. Hodge theory.

(3) Existence of Solutions.(k = Q)
e.g. Diophantine geometry.

(4) Counting Problems.
e.g. Gromov-Witten theory.
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1.2 §B. What is a Space?

(a) |X| = set of points.

(b) T = topology on X.

(c) O = functions on open subsets of X.

(d) Local model, like Balls on Euclidean topology.

Remark 1.2. The structure of a space can be understood by considering all functions on all
open subsets ⇒ Sheaf!

I. Presheaves and Sheaves

1.3 §A. Presheaves and Sheaves

Let X be a topological space, D(X) = set of open subsets of X.
For x ∈ X, U(x)= set of open neighborhoods containing x.

Definition 1.3 (Presheaf). Presheaf is a contravariant functor F : Cop → Set, more explicitly,
we have restriction morphisms resU,V : F (U) → F (V ) for opens V ⊆ U , satisfying additional
axioms:

A1. O(∅) is the terminal object in the target category.

A2. resU,U = idF (U).

A3. resU,W = resV,W ◦ resU,V .

We will use the special case Ab.

Example 1.4.

(1) Zero sheaf: F (U) = 0 for all open subset U .

(2) Constant presheaf: take a fixed abelian group A, F (U) = A for all open subset U .

(3) Presheaf of continuous functions: take U ∈ D(X),

F (U) =

{f : U → R continuous } U 6= ∅,

0 U = ∅.

(4) Presheaf of holomorphic functions: take X = Cn, F (U) is set of f : U → C which are
holomorphic.
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Definition 1.5 (Section). Section of a sheaf F is just an element of F (U), in partacular, if
s ∈ F (X), we call it a global section.

Definition 1.6 (Stalk). For x ∈ X, we define the stalk at x Fx as

Fx := lim−→
x∈U
U open

F (U) = (s, U)/ ∼

where the equivalen relationship is (s, U) ∼ (t, V ) if there exist open W ⊆ U ∩ V such that
sW = tW , where sW means the image of restricting s to W .

See we have a natural morphism F (U)→ Fx by s 7→ (s, U), denote the image as sx.

Remark 1.7. sx is not determined by its valume at x, but what’s the value at a point? Now,
we consider it as a continuous function to get an intuition, see x and 2x, they are both 0 at 0,
but there is no neighborhood U of 0 such that they coinside. You can also see the nodal curves
we mentioned at the begining.

2 Lecture 2.
22/8/31.

Fact 2.1. Fx is an abelian group as

[(s1, U1)] + [(s2, U2)] := [s1|U1∩U2 + s2|U1∩U2 , U1 ∩ U2]

Just check it by computation, I skip the proof or, leave it as an exercise lol.

Picture 1

Remark 2.2. Take U ∈ D(x), F (U)→ Fx is a homomorphism of abelian groups by

s 7→ [(s, U)]

Definition 2.3 (Germ). s ∈ F (U), x ∈ U , define sx := [(s, U)] ∈ Fx which is called the germ
of s at x.

Remark 2.4. Germ at x 6= value at x which we have seen before.

• Functuin on a set which is a generaliztion of traditional notion of function. X = a set,
A = {Ax|x ∈ X} a family of abelian groups indexed by X.
Define an A -valued function as a map.

s : X →
⊔
x∈X

Ax

x 7→ s(x) ∈ Ax

8



See that the value area for every point of domain is different, we can also see this phenomenon
in affine scheme case: f ∈ A, f → A/p ↪→ Frac(A/p).
Let F be a presheaf on a topological space X, U ⊆ X open subset, take s ∈ F (U), s : U →⊔
x∈U Fx is a F -valued function on U .

Compare it with the valued functions:

(1) Ax = k e.g. k = R,C, even finite fields.

(2) Given a continuous function s : U → R

s : U →
⊔
OU,x

σ−→
⊔
x∈X

R

by
x 7→ sx 7→ sx(x)

Where OU,x := stalk of the presheaf of continuous functions on U .
OU,x

σx−→ k ⇒ ker(σx) := {sx ∈ OU,x|sx(x) = 0}.

Fact 2.5. ker(σx) is the unique maximal ideal of OU,x, hence

OU,x
σx−→ OU,x/mx = R

Remark 2.6. It is the notion we considered in manifolds, we want to glue the local models to
get a global one.

• Presheaf is NOT good as we expect ! See the following strange cases:

(1) Take nonzero s ∈ F (U) which induces s : U →
⊔
x∈U Fx by x 7→ sx. It may happen that

sx = 0 for all x ∈ U .

Example 2.7. Take X = R, let

F (U) =

{f : U × U → R | f continuous } U 6= ∅

0 U = ∅

∆ := {(x, x) | x ∈ R} ⊆ R × R, choose a continuous s : U × U → R such that s = 0 in a
neighborhoodof ∆ ∩ U × U , but s 6= 0⇒ sx = 0 but s 6= 0 in global!

picture 2

(2) Compatible local sections maybe can NOT be glued to a global section.

Example 2.8. X = {x, y} a set of two points with discrete topology.

A = Z.

F = constant presheaf on X with A.

For any open subset U ⊆ X, let
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F (U) =

A if U 6= ∅

0 if U = ∅

Take s1 ∈ F (x) such that s1 = 1, and s2 ∈ F (y) such that s2 = 0, but we can not find a
global section such that its restriction to each open subset is we want.

To deal with these strange cases, we arrive at sheaf.

Definition 2.9 (Sheaf). Let F be a presheaf on X, then F is a sheaf if every local sections
which are compatible can be glued to a unique global one.

picture 3
We have a natural way to get a sheaf from a presheaf(which is unique by universal property, for
more details, see [Har77]).

Definition 2.10 (Sheafification). Let F be a presheaf on X, the sheafification of F is a sheaf
F̃ on X defined as following:

F̃ (U) := {s : U →
⊔
x∈U

Fx | s satifies (a) and (b)}

(a) sx ∈ Fx,

(b) ∀x ∈ U , there exists W ∈ D(x) and t ∈ F (W ) such that t(y) = s(y) ∀y ∈ W , see it means
s is defined locally! Since in every point, it coinsides with an element in a neighborhood.

picture 4

2.1 §B. Morphisms between Sheaves

After we get objects, we talk about morphisms between them.

Definition 2.11. Let F and G be two presheaves on X, a morphism ϕ : F → G is just a
natural transform, isomorphism when it has an inverse.

Example 2.12. Let F be a presheaf on X, F̃ the sheafification of F , then there exists a
natural morphism from F to F̃

F (U)→ F̃

by
s 7→ (x 7→ sx)

Remark 2.13. ϕ : F → F̃ induces an isomorphism Fx ' F̃x forall x ∈ X.
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Definition 2.14 (Germ of morphisms). Let ϕ : F → G be a morphism of presheaves on X, let
x ∈ X, the germ of ϕ at x is defined as

ϕx : Fx → G

[(s, U)] 7→ [(ϕU(s), U)]

Definition 2.15 (Subsheaf). Let F and G be presheaves on X.

(1) G is called a subpresheaf of F if G (U) is a subgroup of F (U)

(2) If F and G are sheaves, then call G a subsheaf of F .

Example 2.16. X = Rn.
F = sheaf of continuous functions on X.
G = sheaf of C∞ functions on X.
Then G is a subsheaf of F .

Definition 2.17 (Kernel). Let ϕ : F → G be a morphism of presheaves, define the kernel
presheaf kerϕ as

ker(U) := ker:ϕU:F (U)→ G (U)

Exercise 2.18. If F and G are sheaves, then ker(ϕ) is a sheaf.

Proof. We can prove this exercise in two ways:

(1) My solution is using the sheafification functor˜is right adjoint, hence commute with ker, so
ker ◦̃ '˜◦ ker.

(2) Thanks to Shengyu Hou, we can prove it by 3×3 lemma, and I will write it next time.

Definition 2.19 (Image presheaf). Let ϕ : F → G be a morphism of presheaves, the image
presheaf preim(ϕ) is a subsheaf of G defined as

preimϕ(U) := imϕU : F (U)→ G (U)

Remark 2.20. Even F and G are sheaves, preimϕ may NOT be a sheaf!

Definition 2.21 (Image sheaf). Let ϕ : F → G be a morphism of sheaves, the image sheaf
is the sheafification of preim(ϕ).

Definition 2.22. Let ϕ : F → G be a morphism of sheaves.

11



(1) ϕ is injective if ker(ϕ) is zero sheaf.

(2) ϕ is surjective if im(ϕ) = G (see it is after sheafification, preim(ϕ) may not be G ).

Remark 2.23. Let ϕ : F → G be a morphism of sheaves.

(1)

ϕ is injective ⇐⇒ ∀U ∈ D(x), ϕU is injective

⇐⇒ ∀x ∈ X, ϕx : Fx → Gx is injective.

(2) ϕ is surjective ⇐⇒ ∀x ∈ X, ϕx : Fx → Gx is surjective.

(3) ϕ is isomorphic ⇐⇒ ∀x ∈ X, ϕx : Fx → Gx is isomorphic.

Remark 2.24. Let F be a presheaf, G a sheaf such that F is a subpresheaf of G , then

F ⊆ F̃ ⊆ G

Definition 2.25 (Quotient and cokernel). I will write this next time

2.2 §C. Base Change

Definition 2.26 (Direct image). Let f : X → Y be a continuous map between topological
spaces. Let F be a sheaf on X, then the direct image f∗F of F is defined as:

(1) f∗F (U) := F (f−1(U)), U ∈ D(Y ).

(2) resf∗F
U,V = resFf−1(U),f−1(V ).

picture

Example 2.27. Let X be a topological space, Y a single point, f : X → {pt} = Y , F is a
sheaf on X. See f∗F (Y ) = F (X), namely f∗F is taking global section.

Definition 2.28 (Inverse image). Let f : X → Y be a continuous map between topological
spaces, G a sheaf on Y . Define a presheaf Pf−1G as following:

Pf−1G (U) := lim−→
f(U)⊆V
V ∈D(Y )

G (V ) ∀U ∈ D(X),

i.e. Pf−1G (U) = {(s, V ) | s ∈ G (V ), f(U) ⊆ V }/ ∼, more explicitly, (s, V ) ∼ (s′, V ′) ⇐⇒
∃W ∈ D(Y ), f(U) ⊆ W ⊆ V ∩ V ′, s |W= s′ |W .

Definition 2.29 (Inverse image). The inverse image f−1G is the sheafification of Pf−1G

12



Example 2.30. Let F be a sheaf on X, i : U ↪→ X the natural inclusion where U is an open
subset of X. Define F |U as following:

F |U (V ) := F (V ), V ⊂ U both open subsets.

Then i−1F = F |U .

•Compare stalks under base change.

(1) Direct image f : X → Y continuous, x ∈ X and y = f(x) ∈ Y , F a sheaf on X, then f

induces

fx : (f∗F )y → Fx

[(s, U)] 7→ [(s, f−1(U))]

Remark 2.31. In general, fx is neither injective nor surjective.

3 Lecture 3.
22/9/5
More on fx : (f∗F )y → Fx.

Example 3.1. 1) f : R2 = X
1id−→ Y = R2, (x1, x2) 7→ (x1, x2)

X : Euclidean topology,

Y : cofinite topology(closed subsets are finite subsets),

o : the original point,

F : sheaf of R-valued continuous functions, sheaf on X.

Take h : R2 → R continuous with h |B(0,1)= 0 and h |X\B(0,1) does not vanish. See ho = 0 in
F , but not 0 in f∗F , hence fx is not injective.

Remark 3.2. If f is a homeomorphism, then fx is an isomorphism.

• Stalk of inverse image.
f : X → Y continuous, x ∈ X, y = f(x), F sheaf on Y .

fx : (f
−1F )x → Fy

[(s, U)] 7→ [(s, V )]

where s ∈ F (V ), f(U) ⊂ V , see [(s, U)] is really a representative of elements of (f−1F )x.

13



Proposition 3.3. fx is an isomorphism.

•Exactness under Base Change

Definition 3.4. · · · → Fi
φi−→ Fi+1

φi+1−−→ Fi+2 → · · · is exact if ker(ϕi+1) = im(ϕi) for any i.

Proposition 3.5. (1) f∗ is left exact.

(2) f−1 is exact, since fx is an isomorphism.

(3) f−1 a f∗

Remark 3.6. All concepts of sheaf of abelian groups can be defined for sheaf of rings(commutative
with identity).

3.1 §D. Ringed Space

Definition 3.7.

(1) A ringed space is a pair (X,OX): X a topological space, and OX a sheaf of rings on X.

(2) OX is called structure sheaf.

(3) Elements of OX(U) are called regular functions on U , where U is an open subset of X.

Example 3.8. (1) (X,OX) =

X topological space

OX = sheaf of R-valued continuous function

(2) (X,OX) =

X differential manifold

OX = sheaf of C∞ functions

(3) (X,OX) =

X complex manifold

OX = sheaf of holomorphic functions

Definition 3.9 (Locally ringed space). OX,x is a local ring, ∀x ∈ X.

Definition 3.10.

(1) Morphism between ringed space is a pair (f, f#)

f : X → Y continuous

f# : OY → f∗OX a morphism of sheaf of rings(hence natural)

14



(2) For locally ringed soace, we need

f#
x : OY,f(x) → OX,x is a local morphism

[(s, U)] 7→ [(f#(s), f−1(U))]

(3) Isomorphism:

(a) f is a homeomorphism.

(b) f# is an isomorphism of sheaves of rings.

Example 3.11 (Local model of diff/cplx mfd). (X,OX) = differential/complex manifold then
∀x ∈ X, ∃U ⊂ X such that

(U,OX |U) ' (B(0,1),OB(0,1))

4 Lecture 4.
22/9/7.
We still talk about fx.

Example 4.1. Ŝ =Riemann Sphere, Ŝ = C ∪ {∞} compact complex manifold.

C \ {0} → C \ {0}

z 7→ 1

z

Take X = Ŝ t Ŝ with Euclidean topology.
F = sheaf of holomorphic functions on X.
Y = Ŝ t Ŝ with trivial topology(open sets are only ∅ and Y ).
f : X

id−→ Y .
(f∗F )x = F (X) = {g : X → C | g |Ŝi

= constant} so we may have g1 = 0 and g2 = 1.
Consider fx : F (X) = (f∗F )x → Fx.

(i) Not injective.

g = 0 x ∈ Ŝ

g = 1 x /∈ Ŝ
⇒ g 6= 0 but gx = 0.

(ii) s ∈ Fx such that ′(s, U)′ is not a constant(in any neighborhood of x) ⇒ there does not
exist g ∈ F (X) such that gx = s.

II. Affine Algebraic Sets
Affine algebraic sets= topological space of local model in algebraic geometry.
k = a field, e.g. R,C,Q,Fp...

15



4.1 §A. Affine Algebraic Sets

Some notations:

n ∈ Z≥0 Ank = affine k-space of dimension n

= {(x1, ..., xn | xi ∈ k)}

= kn(as sets)

k[x1, ..., xn] =ring of polynomials in n variables.

Definition 4.2. Let S ⊂ k[x1, ..., xn], we define

Z(S) := {x ∈ Ank | ∀F ∈ S, F (x) = 0}

We call Z(S) the affine algebraic set defined by S(it is namely the common zero locus of elements
of S).

If S = {F1, ..., Fn} is a finite set, we denote Z(S) by Z(F1, ..., Fn).

Example 4.3. 1) Z(1) = ∅, Z(0) = Ank .

2) If n = 1 and S 6= ∅, then Z(S) is a finite set. Conversely, given a finite set {x1, ..., xm} ⊂ A1
k,

just take F =
∏m

i=1(X − xi), hence Z(F ) = {x1, ..., xm}. So in A1
k case, affine algebraic set=

finite set, just cofinite topology.

4.2 §B. Zariski Topology

Lemma 4.4. S ⊂ k[x1, ..., xn], I = ideal generated by S, then Z(I) = Z(S).

Corollary 4.5. It is enough to consider the affine algebraic sets defined by ideals.

(i) ∩iZ(Ii) = Z (
∑
Ii) arbitray intersection.

(ii) ∪mZ(Ii) = Z(∩mIi). finite union.

Definition 4.6 (Zariski topology). Closed subsets of Ank in Zariski topology is the affine algebraic
sets of Ank .

For V ⊂ Ank , it can inherit Zariski topology from Ank .

Proposition 4.7. F : Ank → k = A1
k where F is a polynomial, F is continuous in Zariski

topology.

Proof. Let V = {a1, ..., an} ⊂ A1
k closed subset(=finite set), F−1(V ) ∪ F−1(ai) = V (

∏
(F − ai))

closed in Ank ⇒ F is continuous.
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Remark 4.8. Zariski topology the weakest topology on Ank such that F : Ank → k is continuous,
where k with cofinite topology.

Remark 4.9. Zariski topology is very different from the Euclidean topology.

Let’s talk some characters of Zariski topology:

(a) Closed subsets are ‘very small‘(measure=0), opens are ‘very big‘! E.g. A1
k Zariski=cofinite

; open ball in Euclidean.

(b) Zariski topology is NOT Hausdorff. E.g. k = infinite field, U1, U2 ⊂ A1
k then U1 ∩ U2 never

empty.

(c) Ank
set
= k × · · · k︸ ︷︷ ︸

n-times

set
= A1

k × · · ·A1
k︸ ︷︷ ︸

n-times

. However, Zariski on Ank 6= product topology on A1
k × · · ·A1

k.

(d) ∀F ∈ k[x1, ..., xn], define D(F ) := Ank \Z(F ) is open, then {D(F ) | F ∈ k[x1, ..., xn]} form a
base for Zariski topology.

(e) Many difficulities in algebraic geometry to study local properties at a point are caused by
(a) and (b).

4.3 §C. Ideals of Affine Algebraic Sets

Definition 4.10. Let V ⊂ Ank be a subset, then define I(V ) := {F ∈ k[x1, ..., xn | F (v) = 0 ∀v ∈ V ]},
it is obviously an ideal.

Fact 4.11.

(1) If V is an affine algebraic set, then Z(I(V )) = V . It is obvious that V ⊂ Z(I(V )), conversely,
V = Z(J) where J is an ideal, then J ⊂ I(V ), V = Z(J) ⊇ Z(I(V )), hence equal.

(2)

{affine algebraic set in Ank} → {ideals in k[x1, ..., xn]}

V 7→ I(V )

is injective, hence if I(V1) = I(V2) then V1 = V2. In particular, ifW 6= V , then ∃f polynomial
that f |W= 0, f |V 6= 0, a polynomial can distinguish two affine algebraic sets.

(3) J ⊂ Z(I(J)), in general not equal unless J is radical, e.g. J = (x2) ⇒ V (J) = {0} ⇒
I({0}) = (x) 6= (x2) but

√
(x2).

(4) If k is infinite, then I(Ank) = 0, e.g. if k = Fp, consider F =
∏p

i=1(X − ai), then F ∈ I(A1
k).
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Proof. n=1. Since every F ∈ k[X] has only finite roots, then for any subset S of k[X],
Z(S) 6= A1

k since A1
n has infinite elements.

n=2. Take P ∈ k[X1, ..., Xn] such that P 6= constant, then we can write P = ar(X1, ..., Xn−1)X
r
n+

· · · , assume r ≥ 1 and ar(X1, ..., Xn−1) 6= 0.

⇒ By induction, ∃(b1, ..., bn−1) ∈ An−1
k such that ar(b1, ..., bn−1) 6= 0

⇒ f(Xn) = P (b1, ..., bn−1, Xn) = ar(b1, ..., bn−1)X
r
n which has only finitely mant solu-

tions in k.

⇒ there exists bn ∈ k such that f(bn) 6= 0, hence P /∈ I(Ank).

⇒ I(Ank) = ∅.

n=3. a = (a1, ..., an) ∈ Ank , then I({a}) = (x1 − a1, ..., xn − an)

Theorem 4.12 (Hilbert Basis Thm). Let A be a Noetherian ring, then the polynomial ring A[X]

is Noetherian, more generally, so does A[[X]].

Corollary 4.13. Given an affine algebraic set V ⊂ Ank , then ∃f1, ..., fr ∈ k[x1, ..., xn] such that
V = Z(f1, ..., fr), i.e. V is the intersection of finitely many hypersurfaces!

4.4 §D. Hilbert Nullstellensatz

{affine algebraic sets}� {ideals of k[x1, ..., xn]}
V 7→ I(V )

Z(J)← J

V = Z(I(V ))

J ⊂ I(V (J))

Here is a proposition from [AM94] .

Proposition 4.14 ([AM94].prop.7.9). k = a field, R = finitely generated k-algebra.
If R is a field, then R is a finite extension of k. In particular, if k is algebraically closed, then
R = k.

Theorem 4.15 (Hilbert Nullstellensatz). k = algebraic closed field (e.g. C,Q).
J = an ideal of k[x1, ..., xn], then I(Z(J)) =

√
J .

Example 4.16. n = 1, k = R, J = (x2 + 1) ⊂ R[x], then Z(J) = ∅, but 1 /∈
√

(x2 + 1).
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Corollary 4.17. If k is algebracially closed, then there is a one to one correspindence between
affine algebraic sets in Ank and radical ideals of k[x1, ..., xn]

{affine algebraic sets in Ank} ←→ {radical ideals in k[x1, ..., xn]}

V 7→ I(V )

Z(J)← J

See V 7→ I(V ) 7→ Z(I(V )) = V , see I(V ) is a radical by Hilbert(if f vanishes on V , then
f r ∈ I(V ) for some r) and J 7→ Z(J) 7→ I(Z(J)) =

√
J = J , hence bijection.

Corollary 4.18 (Weak form). If k is algebraically closed, then I contains 1 ⇐⇒ {fi} the
generators of I have no common zeros.

5 Lecture 5.
22/9/14.
•Recall:

(1) Affine algebraic set.

(2) Zariski topology.

(3) Zariski topology on V .

(4) Hilbert Nullstellensatz.

III. Affine Algebraic Variety
An affine algebra variety is a locally ringed space (V,OV ) where Let V be an affine algebraic
setwith Zariski topology on it, OV = sheaf of regular functions.
In this chapter, we aim to define the regular functions on open subsets of V .

1. In differential geometry, we consider C∞ functions.

2. In complex geometry, we consider holomorphic functions.

3. In algebraic geometry, we consider functions defined by polynomials.

5.1 §A. Regular Functions

Let V ⊆ Ank be an affine algebraic set.
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Definition 5.1 (Coordinate ring of V ).

A(V ) : = {f : V → k | ∃F ∈ k[x1, ..., xn] such that F |V= f}

= {F ∈ k[x1, ..., xn]/ ∼}

Where F ∼ F ′ ⇐⇒ F |V= F ′ |V⇐⇒ F − F ′ ∈ I(V ), hence A(V ) = k[x1, ..., xn]/I(V ). A(V ) is
called the coordinate ring of V .

• Basic facts of Zariski topology on V .

(1) Given f ∈ A(V ), D(f) = {x ∈ V | f(x) 6= 0} is open in V (just take f to F , D(F ) ∩ V ).

(2) Given an open U ⊆ V , then ∃f1, ...fr ∈ A(V ) such that U = ∪ni=1D(fi). In particular,
{D(fi)} f ∈ A(V ) form a base of the Zariski topology on V . Similiar proof like above one.

Remark 5.2. We call U quasi-affine.

•Assume we have defined OV , then we want:

(1) Global: A(V ) ⊆ OV (V ).

(2) Local: on D(f), where f ∈ A(V ), OV (D(f)) =
{

g
fn

: D(f)→ k | n ∈ Z≥0, g ∈ A(V )
}
, see

its elements are k-valued functions.

Now, we come to the sheaf of regular functions.

Definition 5.3 (1st. Regular functions on subsets). Let U ⊆ V be an open subset,

OV (U) :=
{
s : U → k

∣∣∣such that ∃U = ∪ri=1D(fi), fi ∈ A(V ), s |D(fi)=
gi
fni
i

∈ OV (D(fi))

}
where gi ∈ A(V ) and ni ∈ Z≥0, and by Hilbert basis theorem, we can find a finite open cover of
U .

Example 5.4.

(1) V = {x1x2 − x3x4 = 0} ⊆ A4
k

(2) k = R, V = A1
k, g = x2 + 1 ⇒ D(f) = V ⇒ 1

f
∈ Γ(V,OV ) ⇒ A(V ) ⊆ Γ(V,OV )(since R is

not algebraic closed).

Before we introduce the 2nd definiton of sheaf of regular functions, let’s recall the sheafification
of a presheaf.

1) First, we define Fx =regular functions in a small neighborhoodof x.

2) Second, we define F (V ) =gluing compatible local functions of Fx ∀x ∈ U .
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Definition 5.5 (Regular functions at a point). ∀x ∈ V ⊆ Ank , we define

OV,x =
{
g

f

∣∣∣f, g ∈ A(V ), f(x) 6= 0

}/
∼

Where g
f
∼ g′

f ′
if ∃f ′′ ∈ A(V ), x ∈ D(f ′′)⇐⇒ f ′′(x) 6= 0, such that

g

f

∣∣∣
D(f ′′)

=
g′

f ′

∣∣∣
D(f ′′)

Which is equivalent to f ′′(gf ′ − fg′) = 0 in A(V )(see we can shrink D(f ′′) small enough to be
contained in D(f), taking intersection is enough)

Proposition 5.6. there exists an isomorphism of rings OV,x ' A(V )px , [ gf ] 7→ [ g
f
], where px =

{f ∈ A(V ) | f(x) = 0}.

Definition 5.7 (2nd. Regular functions on general open subsets). U ⊆ V .

OV (U) =

{
s : U →

∐
x∈X

OV,x
∣∣∣s|D(f) =

g

fn
∀x ∈ U, for some f, g ∈ A(V ), x ∈ D(f) ⊆ U, n ∈ Z≥0

}

Proposition 5.8 (Proterties of OV ).

(1) OV is a sheaf of rings on V .

(2) OV,x ' A(V )px .

(3) If k = k, then OV (D(f)) = A(V )f , it is exactly the local picture we want!

Remark 5.9. k = R,

s =
1

x2 + 1
∈ OA1

k
(A1

k)

/∈ A(A1
k) = k[x]/(0) = k[x], recall I(A1

k) = (0)

Remark 5.10. (3) needs a long and maybe tedious proof you can find it in [Har77] , but it is
worth a try, since it is a basic trick in algebraic geometry.

5.2 §B. Affine Algebraic Variety

Definition 5.11. A locally ringed space (X,OX), where OX is the sheaf of k-valued functions,
is called an affine algebraic varieties if there exists an affine algebraic setV and a homeomor-
phism f : X → V such that (f, f#) : (X,OX) → (V,OV ) is an isomorphism of locally ringed
spaces, where

f#
U : OV (U)→ f∗OX(U) = OX(f−1(U)) U ⊆ V open

s 7→ s ◦ f
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Remark 5.12.

(1) HomV ar(X,Y ) = morphisms of locally ringed space where (X,OX), (Y,OY ) are affine alge-
braic varieties.

(2) The definition of affine algebraic variety is intrinsic, while that of an affine algebraic set is
NOT(depends on the embedding into Ank).

Proposition 5.13. Let V ⊂ Ank be an affine algebraic set, f ∈ A(V ), see (D(f),OV |D(f)) is
also an affine algebraic variety, since OV (D(f)) = i∗OV , where i : D(f) ↪→ V .

Example 5.14. V = A1
k, f = X, D(X) = A1

k \ {(0)}, V ′ = {XY = 1}, p(x, y) = x ⇒ p(V ′) =

D(X)(bijection).
Define Φ : Ank \ V (F )→ An+1

k by (x1, ..., xn) 7→
(
x1, ..., xn,

1
f(x1,...,xn)

)
.

Define Φ−1 : An+1
k → Ank by (x1, ..., xn, xn+1) 7→ (x1, ..., xn), X = Φ(V ) is an affine algebraic setin

An+1
k (V (F (x1, ..., xn)xn+1 − 1)).

Exercise 5.15. Φ : D(f) = V ∩D(F ) → X is an isomorphism, pullback of a regular function
is still a regular function.

Corollary 5.16. Any open subset of an affine algebraic varietyis covered by open subsets which
are affine algebraic varieties.

Remark 5.17. Affine algebraic variety is the local model in algebraic geometry.

Proposition 5.18. Let (X,OX), (Y,OY ) be affine algebraic varieties, then there exists one-to-
one correspondence.

HomV ar(X,Y )
1:1←→ Homk-alg(Γ(Y,OY ),Γ(X,OX))

Corollary 5.19. If k = k. Cat{affine algebraic variety} ' Cat{reduced finitely generated
k-algebra}.

Example 5.20 (Bijection 6= isomorphism). f : A1
R → A1

R by x 7→ x3 is an bijection.
f#
o : k[x]xOA1

k,o
→ OA1

k,o
= k[x]x is x 7→ x3 is not an isomorphism of local rings. Hence f is not

an isomorphism.

6 Lecture 6.
22/9/19.
•: compare two definitions of affine algebraic varieties.
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Definition 6.1 (1st given in the course). A locally ringed space (X,OX) with OX a sheaf of
k-valued functions(OX(U) ⊆ {s : U → k} U ⊆ X open) is called an affine algebraic variety if
∃(V,OV ) with V an affine algebraic set, OV the sheaf of regular functions on V , ∃f : X → V

such that

(a) f is a homeomorphism.

(b) ∀ U ⊂ V open, f#
U : OV (U)→ OX(f−1(U)) with s 7→ s ◦ f , so k-valued function on f−1(U),

(f, f#) : (X,OX)→ (V,OV ) is an isomorphism of locally ringed space.

Remark 6.2. See that s ◦ f may not in OX(f−1(U)), but we require it belongs to it.

Definition 6.3 (2nd). A locally ringed space (X,OX) is called an affine algebraic variety, if
there exists (V,OV ) with V an affine algebraic set, OV sheaf of regular functions, such that
there exists (f, f#) : (X,OX) ' (Y,OV ) an isomorphism of locally ringed space.

Question 6.4. Where is the difference?

(1) In Def 1st, we require OX is a sheaf of k-valued functions, but f# is induced by f , not a
priori given in definition.

(2) In Def 2nd, a priori OX may not be a sheaf of k-valued functions and f# is a priori given
in the definition.

However, we will show that they are equivalent! Def 1.⇐⇒Def 2.

Recall 6.5 (Locally ringed space).

(X,OX) = a locally ringed space

= X topological space +OX sheaf of rings +OX,x local ring

Where OX,x/mx is a field, called the residue field, denoted κ(x).
∀ V ⊆ X open, OX(U) ⊆

{
s : U →

∐
x∈U OX,x | ∀x ∈ U, s(x) ∈ OX,x

}
, see we have a natural

ϕU :
∐

x∈U →
∐

x∈U κ(x) which induces:{
s̃ : U →

∐
x∈U

OX,x →
∐
x∈U

κ(x) | ∀x ∈ U, s̃(x) ∈ κ(x)

}

Remark 6.6. (1) κ(x) is independent of x.

OX,x OX,x = κ(x)/mx

OV,f(x) OV,f(x)/mf(x) = κ(f(x)) ' k

f#x ≃ ≃ f̃#x
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The right vertical isomorphism is induced by f#
x is a local homomorphism.

(2) ϕU is injective, ∀ U ⊆ X open:

s OX(U) {U →
∐

x∈U κ(x)}

s̃ OV (f(U)) {f(U)→
∐

y∈f(U) κ(y)}

φ(U)

φf(U)

f#U ≃

If s ∈ kerϕ, then there exists s̃ ∈ OV (f(U)) such that f#
U (s̃) = s, hence ϕf(U)(s̃) = 0(see

the right vertical arrow is natural), by axiom of sheaf, s̃ = 0, hence s = 0.
Hence, if (X,OX) is an affine algebraic varietyin the sense of Def 2. then OX is naturally a
sheaf of k-valued functions on V , and (X,OX) is an affine algebraic varietyin the sense of Def 1.

‘affine algebraic variety’ in Algebraic Geometry ' ‘open ball’ in differential/complex geometry.
Open subsets of affine algebraic variety= union of standard open subsets D(f), f ∈ Γ(X,OX),
and (D(f),OX |D(f) is an affine algebraic variety.

IV. Basic Properties of Affine Algebraic Varieties

6.1 §A. Irreducibility

Example 6.7. V = {XY = 0} ⊆ A2
k, we have X-axis(Y = 0) and Y -axis(X = 0), hence

V = V (X) ∪ V (Y ), we decompose the variety into two varieties!

Definition 6.8 (Irreducibility). Let X be a topological space, then the followings are equivalent:

(a) If X = F ∪G, F,G are closed subsets of X then either X = F or X = G.

(b) If U ∩ V = ∅ in X, where U, V are open then either U = ∅ or V = ∅.

(c) If U ⊆ X is a nonempty open subset of X, then U = X(open is dense).

Example 6.9.

(1) R with Euclidean topology is reducible(minus a open ball then cups the closure of the open
ball).

(2) If X is Hausdorff, then only singleton space is irreducible, since for every pair of points, we
can give them disjoint open neighborhoods, hence opens are not dense, and we will see later
the dimension of Hausdorff space is 0 due to this property.

Proposition 6.10.
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(1) V ⊆ Ank an affine algebraic set, then

V is irreducible ⇐⇒ I(V ) is prime

⇐⇒ A(V ) is an integral domain

(2) V is an affine algebraic variety then V is irreducible ⇐⇒ Γ(V,OV ) is an integral domian.
Recall that if k = k, then Γ(V,OV ) = A(V ), if not, then they are different(we may have
denominator is a polynomial).

Corollary 6.11. If k is infinite, then Ank is irreducible since I(Ank) = (0).

Remark 6.12. If k is finite, Ank = union of finite points, and actually every point is closed,
hence not irreducible.

Question 6.13. So, can we decompose X into union of irreducible components?

Definition 6.14 (Noetherian Space). A topological space X is called Noetherian if it satisfies
ACC for open subsets which is equivalent to DCC on closed subsets.

Example 6.15. By Hilbert basis theorem, an affine algebraic set is Noetherian.

Theorem 6.16. If X is Noetherian, then X has a unique decomposition into union of irreducible
components, X = ∪ni Ui with Ui irreducible and Ui ( Uj for any i, j.

7 Lecture 7.
22/9/23.
•From now on, we will always assume k = k, char k = 0. e.g. C(uncountable), Q(countable).

7.1 §B. Dimension

•Comparing with differential/complex geometry, then main difficulty to define the dimension of
an affine algebraic variety is that in general, it is NOT an open subset of an affine space Ank(see
in differential/complex geometry just use the dimension of local open to define dimension).
We will give three methods to define ‘dimension’ which are all interesting.
(1) Topological dimension

Definition 7.1. Let X be a topological space. We define the dimension of X, denoted by
dim(X), to be the supremum of all integers n such that there exists a chain of distinct irreducible
closed subsets

Y0 ( · · · ( Yn
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Remark 7.2. (1) We can think dim(X) as a definition ”from small to large”, like

point ( curve ( surface ( · · · ( X

Like

picture
(2) This definition is very different from given in differential/complex geometry. Actually if X

is Hausdorff, then the only irreducible component is singleton, see a Hausdorff space X is
irreducible if and only if X is a singleton.

(2) Krull dimension

Recall 7.3 (Krull dimension of a ring). Let A be a ring, p ∈ SpecA, then we define the height
of p denoted by ht p.

ht p := sup
{
n ∈ Zn≥0

∣∣∣ ∃p0 ( · · · ( pn = p pi prime ideals
}

Then the Krull dimension of A is defined as dimK(A) = supp∈SpecA ht(p).

Corollary 7.4. Let V be an affine algebraic variety. A = Γ(V,OV ) = A(V ), V ⊂ Ank , A(V ) =

k[x1, ..., xn]/I(V )

{prime ideals in A(V )} 1:1←→ {irreducible closed subsets in V }

p 7→ V (p)

U 7→ I(U)

Hence
p0 ( · · · ( pn = p 7→ Y0 ( · · · ( Yn

Where pi ←→ Yn−i, is one to one reverse ordering.

Proposition 7.5. Let V be an affine algebraic variety. Then dimV = dimK Γ(V,OV ), where
dimV is topological dimension, dimK Γ(V,OV ) is Krull dimension.

(3) Transcendence degree of field of rational functions

Fact 7.6. An affine algebraic variety is irreducible ⇐⇒ Γ(V,OV ) is an integral domain.

Example 7.7. V = (xy) is not irreducible by A(V ) = k[x, y]/(xy).

Definition 7.8 (Field of rational functions). Let V be an irreducible affine algebraic variety.
Then the field of rational functions K(V ) of V is Frac(A(V )).

Example 7.9. V = (x1x2 − x3x4) ⊆ Ank , hence x1
x3

= x4
x2

in K(V ).
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Theorem 7.10 ([AM94] Chapter 11). If k = k, A a domain, finitely generated k-algebra. Then
dimK(A) = tr. degk(Frac(A)).

Corollary 7.11. Let V be an irreducible affine algebraic variety. Then dim(V ) = tr. degk(K(V ))

Example 7.12. dim(Ank) = tr. degk(k(x1, ..., xn)) = n., which coincides with our intuition.

Theorem 7.13 (Noether’s normalization lemma). Let R be a domain, finitely generated k-
algebra. If n = tr. degk(R), then there exists x1, ..., xn ∈ R algebraically independent over k such
that R is integrally dependent over the subring k[x1, ..., xn] ⊆ R.

Corollary 7.14. Let V be an irreducible affine algebraic variety of dimension n, then there
exists a dominant morphism ϕ : V → Ank which means ϕ(V ) = Ank .

Proof. Since dimV = n we have tr. degk Γ(V,OV ) = n, hence k[x1, ..., xn] ↪→ Γ(V,OV ) which
induces ϕ : V → Ank , see the lemma below.

Lemma 7.15. If Γ(U,OU) ↪→ Γ(V,OV ), then it induces ϕ : V → U which is dominant.

4) Local dimension

Definition 7.16. Let V be an affine algebraic variety, p ∈ V be a point. Then the local dimension
dimp V of V at p is defined by the Krull dimension of its local ring, dimK OV,p = dimK A(V )mp ,
where mp = {f ∈ Γ(V,OV ) | f(p) = 0}.

Proposition 7.17. dimp V = sup
{
n ∈ Zn≥0

∣∣∣∃{p} ( Y1 ( · · · ( Yn ⊆ V Yi irreducible closed
}
(see

singleton is closed.).

Fact 7.18. k = k, let V be affine algebraic variety. Then there exists 1:1 correspondence:

{points in V } ←→ {maximal ideals in Γ(V,OV )}

p 7→ mp

See C case, maximal ideals correpond to points.
It is easy to see that prime ideals in OV,p ←→ prime ideals contained in mp, see

p0 ( · · · ( pn ⊆ OV,p! p′0 ( · · · ( p′n ⊆ mp ⊆ Γ(V,OV )

Where are both chain of prime ideals.

Proposition 7.19. dimK OV,p = ht(mp).

Proof.

dimp V = dimK OV,p = tr. degk(Frac(OV,p))
V irre
= tr. degk(K(V ))

= dimV
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Remark 7.20. If V is NOT irreducible, then the general dimp V 6= dimV . For example, Let V
be line ∪ pt ⊆ A2

k, then dim(V ) = 1 i.e. {p′} ( l, BUT dimp V = 0

•Depth: from large to small
Recall Top, Krull from small to large, like pt ( curve ( surface ( · · ·

Theorem 7.21 (Krull’s Hauptidealsatz). If A is Noetherian ring, f ∈ A neither zero divisor
nor unit, then dimK A/(f) = dimK(A) − 1 which is equivalent to every minimal prime ideal
containing (f) has height 1.

Example 7.22. Let V be an affine algebraic variety, p ∈ V , A = OV,p, f ∈ A. If f is not a zero
diviosr, then f |Vi 6= 0, where V = V1 ∪ · · · ∪ Vr and Vi is an irreducible component containing p.
Otherwise, if f is not a unit, then p ∈ V (f). Above data implies that dimV (f) = dim V − 1.

Corollary 7.23. Let V be an affine algebraic variety, if f ∈ Γ(V,OV ) is neither a zero divisor
nor a unit, then dimV (f) = dim V − 1.

•Recall: Regular sequence and depth.
Let A be a ring, M an A-module.

(1) A sequence x1, ..., xr of elements in A is called regular for M if xi is not zero divisor for
M/(x1, ..., xi−1)M and x1 is not a zero divisor for M .

(2) If A is a local ring with maxiaml m, then the depth ofM is the maxiaml length of a regular
sequence x1, ..., xn ∈ m for m.

Geometrically, if V is an irreducible affine algebraic variety, p ∈ V , A = OV,p, f1, ..., fr ∈
mp ⊆ OV,p, imagine this process(quotient new fi) as cut by new hypersurface (fi), hence the
‘dimension’ decreases. pic

Example 7.24.

(1) x1, ..., xr form a regular sequence of k[x1, ..., xr].

(2) x1, ..., xr form a regular sequence of k[x1, ..., xr]m0 , local ring at (0, ..., 0) ∈ Ark.

Remark 7.25. Let (A,m) be a local ring, then depth(m) or write depth(A) ≤ dimK A and in
general, it is strict!

Definition 7.26. Let (A,m) be a local Noetherian ring, A is called Cohen-Macauly if depthA =

dimK A.

Definition 7.27. An irreducible affine algebraic variety is called Cohen-Macauly if all its
local rings are Cohen-Macaulay.
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Definition 7.28 (Complete intersection). An affine algebraic variety V ⊆ Ank is called a com-
plete intersection if ∃F1, ..., Fr ∈ k[x1, ..., xn] such that I(V ) = 〈F1, ..., Fr〉 and r = n−dimV .

Example 7.29.

(1) A complete intersection is Cohen-Macaulay, in particular, if F is an irreducible separable
polynomial in k[x1, ..., xn], then V (F ) ⊂ Ank is Cohen-Macaulay.

(2) All irreducible affine algebraic varieties of dim 1 is Cohen-Macaulay.

Remark 7.30. Just understand the example by realizing complete intersection and depth as
accurate cut!

8 Lecture 8.

8.1 §C. Singularity and Zariski tangent space

Example 8.1. V = V (X3 + Y 3 −XY ) ⊆ Ank , then in Euclidean topology, locally at (0, 0), we
have V ≈ ‘cross’ at (0, 0) which is not smooth. V is NOT a submanifold of Ank , i.e. V is singular
at (0, 0).

•Recall: Implict function theorem:
Let M = V (f1, ..., fr) ⊆ Rn, fi is a C1 function.

J =

(
∂fi
∂xj

)
1≤i≤r
1≤j≤n

Example 8.2. f = x21, V (f) = {(x1, ..., xn) | x1 = 0} is a submanifold, but rank J |V (f)= 0.

Remark 8.3. The strange phenomenon is due to we take too little functions.

Theorem 8.4 (Implicit function theorem). M is an m-dimensional submanifold of Rn

⇐⇒: ∀x ∈M , there exists x ∈ Ux ⊆ Rn, and g1, ..., gs ∈ C1(Ux) such that M ∩Ux = V (g1, ..., gs)

J(g1, ..., gs) =

(
∂gi
∂xj

)
1≤i≤s
1≤j≤n

has rank n−m over M ∩ Ux.

Example 8.5. A2
k → A1

k with (X,Y ) 7→ X3+Y 3−XY = F , J = (3X2−Y, 3Y 2−X). See that
J(0, 0) = (0, 0) with rank(0,0) = 0. And J(x0, y0) 6= (0, 0) if and only if (x0, y0) 6= (0, 0). Hence
J(F ) has rank 1 over V \ {(0, 0)}. And V \ {0, 0} is a submanifold of Ank and (0, 0) is a singular
point of V .
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8.1.1 Singular point: non-intrinsic definition

Definition 8.6. V ⊆ Ank an affine algebraic variety. F1, ...Fr ∈ k[x1, ..., xn] are generators of
I(V ). Let p ∈ V be a point, then we call p a non-singular point if J at p(

∂Fi
∂xj

)
1≤i≤r
1≤j≤n

has rank n−m, where m = dimp V , otherwise p is called singular.

Recall 8.7 (Derivative). In geberal, we can NOT define the derivative of a function as that done
in calculous, since there is no natural distance function on k. However we can do it formally.

Example 8.8. (1) V = V (X3 + Y 3 −XY ) ⊆ A2
k. (0, 0) is the only singular point.

(2) V = V (Y 2 −X3) ⊆ A2
k. (0, 0) is the only singular point.

8.1.2 Tangent space: nonintrisic definition

tangent space of V at p = linear approximation of V at p.

= zeros of linear approximation of defining equations of V at p.

= zeros of linear parts of all F ∈ I(V ) at p.

= zeros of linear parts of generators of I(V ) at p.

F ∈ k[x1, ..., xn], p ∈ Ank a point with F (p) = 0, then the linear part DpF is defined as:

DpF :=
n∑
i=1

∂F

∂xi
(p)(xi − pi) p = (p1, ..., pn).

it is just Taylor expansion of order 1, the linear approximation!

Example 8.9. V = V (X3+Y 3−XY ) ⊆ A2
k, namely F = X3+Y 3−XY hence ∂F

∂X
= 3X2−Y ,

∂F
∂Y

= 3Y 2 − X. D(0,0)F = 0, (0, 0) is the singular point, we draw the tangent space at (1
2
, 1
2
),

where D( 1
2
, 1
2
) =

1
4
(X − 1

2
) + 1

4
(Y − 1

2
)

Definition 8.10 (Tangent space of V at p). Let V ⊆ Ank be an affine algebraic variety, p ∈ V a
point, F1, ..., Fr ∈ k[x1, ..., xn] are generators of I(V ). Then the tangent space TpV of V at p
is defined as

TpV : = V
{
DpF

∣∣∣F ∈ I(V )
}

= V
{
DpFi

∣∣∣1 ≤ i ≤ r
}
⊆ Ank

TpV is actually a vector space passing through p(since p always satisfies the equation).
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Fact 8.11. TpV  TpV − p is a linear subspace in Ank .

Proposition 8.12 (Criterion for singularity). V ⊆ Ank an affine algebraic variety, p ∈ V is a
point. Then V is non-singular at p if and only if

dimTpV = dimk(TpV − p) = dimp V

see dimTpV = dimk(TpV − p), the left one is the dimension of algebraic variety, the right one is
the dimension of vector space.

Proof. p ∈ V non-singular ⇐⇒ rank
(
∂Fi

∂xj
(p)
)

1≤i≤r
1≤j≤n

= n − dimp V , where {Fi}1≤i≤r generates

I(V ), then

TpV : =

{
(x1, ..., xn) ∈ Ank

∣∣∣ n∑
i=1

∂Fj
∂xi

(p)(xi − pi) = 0, 1 ≤ j ≤ r

}

TpV − p : =

{
(x1, ..., xn) ∈ Ank

∣∣∣ n∑
i=1

∂Fj
∂xi

(p)xi = 0, 1 ≤ j ≤ r

}

= ker

(
Ank

(
∂Fj
∂xi

(p)
)

−→ Ark

)

dim(Tp − p) equals to dimp V ⇐⇒ rank
(
∂Fi

∂xj
(p)
)
= n− dimp V

Remark 8.13. In general, we always have dimp V ≤ dimTpV .

Definition 8.14 (Tangent bundle). Let V ⊆ Ank be an affine algebraic variety, define:

TZarV := {(p, v) ∈ Ank × Ank | p ∈ V, v ∈ TpV − p}yπ
V where π is the first projection

Remark 8.15. For any p ∈ V , π−1(p) = TpV − p is a k-vector space of dimension dimTpV

which coincides with the version of algebraic topology.

Proposition 8.16. TZarV ⊆ Ank × Ank
set
= A2n

k is an affine algebraic set.

Proof. Let (x1, ..., xn : y1, ..., yn) be the coordinate of A2n
k , F1, ..., Fr ∈ k[x1, ..., xn] generate I(V ).

Define
F̃i :=

n∑
j=1

∂Fi
∂xj

yj ∈ k[x1, ..., xn; y1, ..., yn]

Check that TZarV = V (F1, ..., Fr; F̃1, ..., F̃r) ⊂ A2n
k

Definition 8.17. V ⊆ Ank , an affine algebraic varietysay V is non-singular if V is non-singular
at any point.
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9 Lecture 9.
22/9/28.

9.0.1 Zariski tangent space: intrinsic definition

V ⊆ Ank as an affine algebraic variety, p ∈ V a point, A(V ) = k[x1, ..., xn]/I(V ) coordinate ring,
p = {f ∈ A(V ) | f(p) = 0} is a maximal ideal. ∀f ∈ p, choose F ∈ k[x1, ..., xn] such that
f = F |V , we define a linear map:

dpf : TpV − p ⊆ Ank = kn
A−→ k

v = (v1, ..., vn) 7→
n∑
i=1

∂F

∂xi
(p)vi

where A =

 ∂F
∂x1

(p)

...
∂F
∂xn

(p)

.

Lemma 9.1. dpf is well-defined.

Proof. Choose another G such that f = G |V , which means F −G ∈ I(V ).

n∑
i=1

∂(F −G)
∂xi

(p)vi = 0 ∀(v1, ..., vn) ∈ TpV − p

Hence dpf is well-defined.

Hence we obtain a k-linear map:

p
dp→ Homk(TpV − p, k)

f 7→ dpf

Proposition 9.2. The k-linear map dp induces a k-linear isomorphism of k-vector space

p/p2
dp' Homk(TpV − p, k)

Proof. Step 1. dp is surjective. Choose an embedding Homk(TpV − p, k) ↪→ Homk(k
n, k) just

like basis (e1, ..., em; em+1, ..., en). Given L ∈ Homk(TpV − p, k)

L =


c1
...
cn

 : kn → k

define F =
n∑
i=1

ci(xi − pi) ∈ k[x1, ..., xn], f = F |V .

⇒ dpf =

( c1
...
cn

)
∈ Homk(TpV − p, k)
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Step 2. ker(dp) = p2. Without loss of generality, we may assume p is the origin of Ank , choose
F ∈ k[x1, ..., xn], f = F |V such that dpf = 0 i.e.

n∑
i=1

∂F

∂xi
vi = 0 ∀(v1, ..., vn) ∈ TpV

As a consequence, we obtain an isomorphism of k-vector space:

p/p2
dp' Homk(TpV, k)

Now we come to the intrinsic definition.

Definition 9.3 (Zariski tangent space: intrisnic definition). V an affine algebraic variety, A =

Γ(V,OV ), p ∈ V a point, p is the ideal of p at A, mp the maximal ideal of OV,p.

(1) The cotangent space ΩV,p of V at p is defined as

ΩV,p := p/p2 = mp/m
2
p as k-vector space

(2) The Zariski tangent space TpV of V at p is defined as

TpV :=
(
p/p2

)∗
=
(
mp/m

2
p

)∗
Corollary 9.4. V is an affine algebraic variety, p ∈ V , V is non-singular at p if and only if
dimkmp/m

2
p = dimp V .

9.0.2 Regular local ring

Let (A,m) be a Noetherian local ring, k = A/m be the residue field, then A is called a regular
local ring if dimkm/m

2 = dimK A, where the left one is dimension of k-vector space, the right
one is Krull dimension.

Proposition 9.5. Let V be an affine algebraic variety.

(1) A point p ∈ V is non-singular ⇐⇒ OV,p is a regular local ring.

(2) A point p ∈ V is non-singular ⇒ V is at p.

(3) Vsing is closed.

(4) V \ Vsing is a dense open(only Char k = 0!)

Proof. (1) By definition.

(2) Pure commutative algebra.

(3) By definition and rank of Jacobi matrix.

(4) The existence of non-singular point is NOT trivial. See [[Har77] , Chapter I, Thm 5.3].
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9.1 §D. Normality

(∗) In general, the singular locus Vsing of an affine algebraic variety may be very large like
condimension 1!

Example 9.6. V = V (Y 2 −X3) ⊆ A2
k. See that dimV = 1, Vsing = {(0, 0)}, dimVsing = 0. You

may think a singleton is small, but in topology, it is big in this case.

Recall 9.7. Let B be a subring of A.

(1) An element b ∈ B is integral over A if it satisfies an equation

xk + a1x
n−1 + · · ·+ ak = 0 ai ∈ A

(2) B is integral over A if any element b ∈ B is integral over A.

(3) Assume further that A is an integral domain. Then A is integrally closed if for any element
b ∈ K = Frac(A) is integral over A is in A.

Definition 9.8 (Normal variety). Let V be an affine algebraic variety. Then V is called normal
if OV,p is integrally closed(hence domain) ∀p ∈ V .

Remark 9.9. (1) V is normal ⇒ V is locally irreducible, i.e. ∀p ∈ V , ∃p ∈ U
open
⊆ V such that

U is irreducible, which means local is not a ‘cross’.

Picture

(2) In other words, irreducible components are disjoint.

picture

(3) If V is non-singular, then X is normal[regular local ring is normal/integrally closed. Mat-
sumura Prop.19.4.].

Example 9.10.

V = V (Y 2 − X3) ⊆ A2
k is not normal at (0, 0). See Frac(OV,p) 3

(
Y
X

)2
= X ∈ OV,p ⇒ Y

X
is

integral over OV,p but Y
X
/∈ OV,p.

Remark 9.11. See the example above, OV,p is actually difficult to compute in general, but in
this case, singular point p is (0, 0) which corresponds to (X,Y ), hence OV,p is just OV , and
Frac(OV,p) is easy to compute. Actually we can always move the singular point to the origin as
we did in defining tangent space or computing intersection number.

Two important properties of normal varieties
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Theorem 9.12 (Codimension of singular locus is greater than 2). Let V be an irreducible normal
affine algebraic variety. Then Vsing :=

{
p ∈ V

∣∣∣V is singular at p
}

has codimension greater than
2. i.e. dimV − dimVsing ≥ 2.

Proof.

Proposition 9.13 (Partial converse. Serre). Let V be an irreducible normal affine algebraic
variety, such that codimV Vsing ≥ 2. If V is Cohen-Macaulay, then V is normal.

Corollary 9.14. An one-dimensional irreducible normal algebraic variety is non-singular.

Recall 9.15 (Hartogs’s extension theorem). Let V be an irreducible normal affine algebraic
variety. Let U ⊆ V be an open subset such that dimV (V \ U) ≥ 2. Then Γ(V,OV )→ Γ(U,OU)
is surjective by f 7→ f |U i.e. regular functions on U extend to V .

Example 9.16. f : C2 \ {(0, 0)} → C holomorphic, then f can be extended to a global holo-
morphic function f̃ : C2 → C.

Recall 9.17 ([Mus]. Theorem 11.5.). Let A be a normal(Am is integrally closed over any
m ∈ MaxSpecA) Noetherian integral domain, then

A =
⋂

ht p=1
p∈SpecA

Ap ⊆ FracA

recall that normality is a local property, hence we only need to consider m ∈ MaxSpecA.

Theorem 9.18 (Algebraic Hartog’s Theorem). Let V be an irreducible normal affine algebraic
variety, and U ⊆ V be an open subset such that Codim(V \U) ≥ 2. Then Γ(V,OV )→MOU(U)

is surjective by f 7→ f |U i.e. regular functions on U can extend to V .

Proof. Choose s ∈ Γ(U,OU), ∀ Y ⊆ X an irreducible subvariety of codimension 1, then Y ∩
U 6= ∅. Hence ∃f, g ∈ Γ(V,OV ) such that s = f

g
and g|Y 6= 0, and thus s ∈ AI(Y ), where

I(Y ) = {f ∈ Γ(V,OV )|fY = 0} ⊆ Γ(V,OV ) is a prime ideal with height 1.

{irreducible closed subset of codimension 1 in V } 1:1←→ {prime ideals of height 1 in Γ(V,OV )}

Matsumura
=⇒ s ∈ A ⊆ Frac(A)⇒ s ∈ Γ(V,OV ), hence A = Γ(V,OV ).

9.1.1 Normalization of an affine algebraic variety

Theorem 9.19 (Normalization). Let V be an irreducible affine algebraic variety. Then there
exists an irreducible affine algebraic variety V nor with a morphism n : V nor → V such that

(1) V nor is normal.
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(2) n# : Γ(V,OV ) → Γ(V nor,OV nor) is integrally closed, i.e. Γ(V nor,OV nor) is integrally over
Γ(V,OV ). We call n : V nor → V the normalization of V .

Example 9.20. V = V (Y 2 −X3) ⊆ A2
k. Then the normalization of V is

V nor = V (T −W 2)
n−→ V

(T,W ) 7→ (T, TW )

see V n ' A1
k.

10 Lecture 10.
22/10/10.

Theorem 10.1 (Normalization). let V be an irreducible affine algebraic variety. Then there
exists an irreducible affine algebraic variety V nor with a morphism

n : V nor → V

such that

(1) V nor is a normal variety.

(2) n#
V : Γ(V,OV )→ Γ(V nor,OV nor) induces an isomorphism of fields

Frac(Γ(V,Γ(V,OV ))) ' Γ(V nor,OV nor)

(3) Γ(V nor,OV nor) is a finite Γ(V,OV )-module.

Example 10.2. V = V (Y 2 − X3) ⊆ A2
k. The normalization of V is V nor = V (T −W 2) ⊆ A2

k

with

n : V nor → V

(T,W ) 7→ (T, TW )

Remark 10.3.

(a) (2) means n is birational, i.e. ∃U ⊆ V nor and U ′ ⊆ V open subsets such that

n|U : U → U ′

is an isomorphism.

(b) (3) means that n is finite which means fibres of n is finite(but not necessary conversely).
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Proof. Take A = integral closure of Γ(V,OV ), by Noetherian normalization theorem, there exists
a subring

B = k[T1, ..., Tm] ⊆ Γ(V,OV )

such that Γ(V,OV ) is integral over B. Then

Diagram

(1) A is the integral closure of B in K(V ) by transitivity of integral.

(2) B is integrally closed in Frac(B). Since Γ(Amk ,OAm
k
) = B, Ank is nonsigular hence Amk is

normal which means B is integrally closed. ⇒: A is a finite B-module [AM. Prop.5.17.].
⇒: A is a finite Γ(V,OV )-module. ⇒: A is a finitely generated k-algebra and an integral
domain, so

A ' k[Y1, ..., YN ]/I

I is a prime ideal. We take V nor = V (I) ⊆ ANk and n : V nor → V is induced by Γ(V,OV ) ↪→
Γ(V nor,OV nor) = A.

Recall 10.4. Let A → B be Noetherian rings such that B is a finite A-module. Then for any
maximal ideal m of A, m · B ⊂ m′ for some maximal ideal m′ ⊆ B. Hence n : V nor → V is
surjective.

Definition 10.5. Let V be an affine algebraic variety(maybe reducible.). Then the normal-
ization of V is the disjoint union of the normalization of each irreducible components.

Example 10.6. If we have V = (XY ) ⊂ A2
k, we know the normalization of a single line is

itself, hence the normalization of V is just the disjoint union of two lines, we ‘disjoint’ them like
blow-up.

V. General Algebraic Varieties
Notation 10.7.

(1) Differential manifold = a Hausdorff locally ringed space (X,OX) such that ∀ x ∈ X, there
exists a neighborhood Ux of x such that (Ux,OX |Ux) '

(
B(0, r),OB(0,r)

)
.

(2) We hope to define a general algebraci variety to be a ‘Hausdorff’ locally ringed space such
that ∀ x ∈ X there exists a neighborhood Ux of x such that (Ux,OX |Ux) = affine algebraic
variety. BUT: Zariski topology is never Hausdorff.
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10.1 §A. Prevarieties

Definition 10.8 (Prevariety). A prevariety over k is a locally ringed space (X,OX) such that

(1) X is quasi-compact.

(2) ∀ x ∈ X, there exists Ux open neighborhood of x such that (Ux,OX |Ux) ' some affine
algebraic variety.

Definition 10.9. Let (X,OX) be a prevariety, U ⊆ X an open subset. Then (U,OX |U) is a
prevariety, called an open subvariety of X.

Remark 10.10. Then X = ∪ni=1Xi where Xi = affine algebraic variety and Ui = U ∩ Xi is a
finite union of affine open subsets of Xi.

An open subset of an affine algebraic variety is a prevariety called quasi-affine variety.

Example 10.11. Quasi-affine variety maybe not affine!
U = A2

k \ {(0, 0)} is quasi-affine, but not affine.
Consider

i# : Γ(A2
k,OA2

k
)→ Γ(U,OU)

which is induced by inclusion. By algebraic Hartog’s theorem, i# is an isomorphism(since a
point has codimension 2 in this plane case.). But it is absurd since affine variety is one to one
correspongding to its global section. What’s more, we can compute its cohomology and it does
not vanish in higher dimensional.

Lemma 10.12. A prevariety is Noetherian. In particular, it admits a unique decomposition
into irreducible components.

Proof. Our whole space is X, assume Y1 ⊇ Y2 ⊇ · · · is a sequence of closed subsets. Let
U = ∪∞

i=1(X \ Yi) ⊂ X, each X \ Yi is open, U is quasi-compact. Then, there there exists m ≥ 1

such that U = ∪mi=1(X \ Yi)⇒ Yi = Ym for all m ≥ i.

Definition 10.13 (Closed subprevariety). (X,OX) is a prevariety, i : Z → X is a proper closed
subset. Then (Z,OZ) is a prevariety called a closed subprevariety if Γ(U,OU) =

{f : U → K : ∀x ∈ u, ∃ open neighborhood Ux and g ∈ Γ(Ux,OX) such that f |Ux∩U = g|Ux∩U}

11 Lecture 11.
22/10/12.
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Recall 11.1 (Locally closed subset). X is a topological space, Z ⊆ X is locally closed if
Z = U ∩ Y where U ⊂ X open and Y ⊆ X closed.

Definition 11.2 (Subvariety). Let X be a prevariety, Z = U ∩ Y be a locally closed subset
with structure sheaf OZ , a closed subvariety of U is called a subprevariety of X, i.e. a closed
in open or an open in closed, lol.

Remark 11.3 (?). Let X be a prevariety. Then

(1) U ↪→ X open, OU = i−1OX .

(2) Z ↪→ X closed, OZ 6= i−1OX .

11.1 §B. Separateness and Varieties

Example 11.4. U1 = (A1
k,OA1

k
), U2 = (A1

k,OA1
k
).

Define X = (U1

⊔
U2)/ ∼, where x ∼ y ⇐⇒ x = y if x, y 6= 0, just glue to an affine line with

double original point.

Definition 11.5 (separateness). Let X be a prevariety.

(1) We say that X is separate if all prevarieties Y and all morphisms

Y X

f

g

the set {y ∈ Y : f(y) = g(y)} is closed in Y .

(2) A variety is a separate prevariety.

Back to our previous example: Take

Y X

f

g

with f mapping to U1 indentically and g mapping to U2 indentically.
Then {z ∈ A1

k : f(z) = g(z)} = A1
k \{(0, 0)} is not a closed subset of Y , hence X is not separate.

Remark 11.6 (Geometric meaning of separateness = limit is unique!). Assume X is NOT
separate, then there exists Y prevariety with morphisms

Y X

f

g

such that S := {y ∈ Y : f(y) = g(y)} is not closed, hence ∃{yk} ⊂ S such that yk → y /∈ S,
which means f(y) 6= g(y) but {xk = f(yk) = g(yk)} → f(y) and g(y).
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11.2 §C. Products of Prevarieties: A Criterion for Separateness

(a) Product of Affine Algebraic Varieties
Let X ⊂ Ank , Y ⊆ Amk be two irreducible affine varieties. The product of X and Y , denoted by
X × Y is an irreducible affine algebraic variety:

(1) As a set, X × Y = {(x, y) ∈ Ank × Amk = Am+n
k : x ∈ X, y ∈ Y }.

(2) The Zariski topology of X×Y is the subspace topology induced from Am+n
k (not the product

topology of Ank and Amk .).

(3) The structure sheaf OX×Y = structure sheaf of X × Y as an affine algebraic set in Am+n
k .

Lemma 11.7. X × Y ⊂ Am+n
k is an affine algebraic set, it is obvious since we can embed their

functions into higher-dimensional space.

Lemma 11.8. Γ(X × Y,OX×Y ) ' Γ(X,OX)⊗ Γ(Y,OY ).

Proof.

Γ(X,OX)⊗ Γ(Y,OY ) =
k[X1, ..., Xm]

(F1, ..., Fr)
⊗k

k[Y1, ..., Yn]

(G1, ..., Gs)

=
k[X1, ..., Xm;Y1, ..., Yn]

(F1, ..., Fr;G1, ..., Gs)

recall that the tensor product of two domains is still a domain, see [[ZS75]. Chapter 3. §15].

This tells us that X × Y can be defined intrinsically!

(b) Product of Prevarieties
Let X = ∪mi=1Xi, Y = ∪nj=1Yj with Xi, Yj be irreducible open affine algebraic sets.

Definition 11.9. The product of X and Y , denoted by X × Y , is a prevariety such that

(1) X × Y = {(x, y) : x ∈ X, y ∈ Y } as a set.

⇒ X × Y =
⋃
i,j Xi × Yj as a set.

(2) The Zariski topology on X × Y is the topology induced by the Zariski topology on Xi × Yj
i.e.

U ⊆ X × Y open ⇐⇒
[

(1) Xi × Yj is open, ∀i, j
(2) U ∩ (Xi × Yj) is open in Xi × Yj ∀i, j

]

(3) The structure sheaf OX×Y is the unique sheaf on X × Y such thatOX×Y |Xi×Yj = OXi×Yj .

Remark 11.10. Since X = ∪mi=1Xi, we can refine it into a ‘smaller’ cover, just refine each affine
open to an affine open cover by D(f).
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Lemma 11.11. Let X and Y be two irreducible affine algebraic varieties. Take 0 6= f ∈
Γ(X,OX) and 0 6= g ∈ Γ(Y,OY ). Then

OX×Y
∣∣
D(f)×D(g)

' OD(f)×D(g)

see that D(f) and D(g) are irreducible affine algebraic varieties since they are localization of
domains.

Proof. D(f)×D(g) = D(fg) ⊆ X × Y .

Now (Xi × Yj) ∩ (X ′
i × Y ′

j ) = U ⊆ X × Y .

Question 11.12. OXi×Yj
∣∣
U

?
= OX′

i×Y ′
j

∣∣
U

We make refinement: Xi ∩X ′
i = ∪X ′′

i with X ′′
i are all affine. Then

OXi×Yj
∣∣
X′′

i ×Y ′′
j
' OX′

i×Y ′
j

∣∣
X′′

i ×Y ′′
j

hence we localize to an affine open cover which gives a unique glue.
(2) Criterion for Seperatedness

Proposition 11.13. Let X be a prevariety. Consider the diagonal morphism

X
∆→ X ×X

x 7→ (x, x)

then X is separate if and only if ∆(X) is closed in X ×X.

Proof. ⇒: let pi : X ×X → X for i = 1, 2 and ∆(X) = {(x, x) ∈ X ×X : p1(x, x) = p2(x, x)},
hence ∆(X) is closed since X is separate.
⇐: assume ∆(X) is closed, take an arbitray prevariety Y with f, g : Y → X.

S : = {y ∈ Y : f(y) = g(y)}

= Φ−1(∆(X))

where Φ : Y → X ×X by y 7→ (f(y), g(y)) is closed.

Corollary 11.14. All affine algebraic varieties are separate, moreover affine schemes are sepa-
rate.

Proof. Ank × Ank = A2n
k as prevarieties, then

∆(Ank) = V {Xi − Yi : 1 ≤ i ≤ n}

which is closed.
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Corollary 11.15 (Criterion for separateness). Let X be a prevariety. Assume for any x, x′ ∈ X,
if there there exists an open subset U containing x and x′, furthermore, U is an affine algebraic
variety. Then X is separate.

Proof. Y a prevariety with f, g : Y → X. Z = {y ∈ Y : f(y) = g(y)}. Assume on the contrary
that Z 6= Z in Y . Let z ∈ Z such thatf(z) 6= g(z).
Let U be an affine algebraic set of X containing f(z) and g(z) and

V = f−1(U) ∪ g−1(U)

Consider g|V , f |V : V → U , then

{y ∈ V : f(y) = g(y)} = Z ∩ V

is closed in V since U is separate. But z ∈ {y ∈ V : f(y) = g(y)} = Z ∩ V , a contradiction.

12 Lecture 12.
22/10/17.

Remark 12.1. In the definition of product of affine algebraic varietiesin the last class, we always
assume that the affine algebraic varietiesare irreducible and choose an irreducible affine open
cover. In general, it is false! For example the ‘corss’ does not have an affine open at the origin.
However, the Irreducibility is only used to ensure the tensor product of integral domians is also
reduced.

Theorem 12.2 ([?] V.§15). Let k = k, char k = 0 and A,B are reduced k-algebra. Then A⊗kB
is a reduced k-algebra.

12.1 §D. Completeness

Completeness = ‘compactness’, limit of convergent sequence always exists.
When we say ‘variety’, we mean a separate variety.

Definition 12.3 (Complete). Let X be a variety. X is called complete if for any variety Y ,
the projection X × Y p→ Y is closed, which means mapping closed subset to closed subset.

Example 12.4. X = V (xy − 1) ⊆ A2
k, we have natural projection: A2

k × A1
k

p2→ A1
k. Consider

X ′ = V (xy− 1, x− z) ⊆ A2
k × A1

k which is a closed subset, but p2(X ′) = A1
k \ {0} is open. Affine

space is never complete since it misses the infinite points, in this case, it miss V (x) and V (y),
you can find them in P2

k. An affine algebraic variety is complete if and only if it has only finite
points, hence

Ank is complete⇐⇒ n = 0(A0
k is singleton)
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Remark 12.5 (Geometric meaning of completeness). Let C be a curve, o ∈ C, a marked point.
Consider a morphism

f : C \ {o} → X

and the graph
Γ(f) = {(c, f(c)) : c ∈ C \ {o}}

take the Zariski closure Γ(f)
Zar. Consider the projection

C ×X p1−→ C

X is complete ⇒ p1(Γ(f)
Zar

) is closed in C.

⇒ p1(Γ(f)
Zar

) = C.

⇒ p−1
1 (o) ∩ Γ(f)

Zar
6= ∅.

see C \ {o} is contained in Γ(f)
Zar. In geometry, the limit point is in our closure!

Proposition 12.6 (Basic properties of completeness).

(1) Let f : X → Y be a morphism of varieties. If X is complete, then f(X) is closed and again
complete, closed map and image is complete(like image of compact is compact.).

(2) If X and Y are complete, then so does X × Y .

(3) If X is complete and Y ⊆ X is a closed subvariety, then Y is complete.

(4) Affine algebraic variety if complete ⇐⇒ its dimension is 0(hence finite points).

Remark 12.7 (Basic notions for variety). Let X be a variety.

(1) Dimension of X = its topological dimension.

(2) Irreducibility = irreducible in Zariski topology.

(3) A point p in X is nonsingular if OX,p is a regular local ring, hence dimK OX,p = dimkmp/m
2
p.

(4) Zariski tangent space of p ∈ X =
(
mp/m

2
p

)∗.
(5) X is normal if OX,p is integrally closed.

Remark 12.8 (Compare compactness and completeness for k = C). LetX be an affine algebraic
variety over k, X = ∪Xi, each Xi is an affine open, so we have Xi ↪→ Ani

k , since Ani
k has natural

Euclidean topology, hence we can induce Euclidean topology on Xi, denoted by Xan
i (analytic)

which  Xan with Euclidean topology on X.

Zariski topology on X is complete⇐⇒ Xan is compact in Euclidean.
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12.2 §E. Function Field and Rational Map

(1) Function Field

Definition 12.9 (Function field). Let X be an irreducible affine algebraic variety. Then the
function field K(X) is defined as

K(X) = lim−→
∅ ̸=U⊆X

Γ(U,OX)

where U is open in X, i.e.

K(X) = {(s, U) : s ∈ Γ(U,OX), ∅ 6= U ⊆ X open}
/
∼

where (s, U) ∼ (s′, U ′) ⇐⇒ ∃∅ 6= W ⊆ U ∩ U ′, W is open in X such that s|W = s′|W , see
U ∩ U ′ 6= ∅ since X is irreducible. And we denote the equivalence class by (s, U).

Proposition 12.10.

(1) The canonical map Γ(U,OX) ↪→ K(X) is an injective homomorphism of rings for any open
U .

(2) For any nonempty open U ⊆ X, there exists canonical isomorphism of fields

K(U) ' K(X)

hence we get a criterion of birationalness.

(3) For any x ∈ X, there exists a canonical isomorphism of fields

Frac(OX,x) ' K(X)

Proof. We just list the canonical morphism, and left the readers to check.

(1) s 7→ (s, U).

(2) (s′, U ′) 7→ (s′, U ′).

(3) OX,x → K(X) by (s, U) 7→ (s, U), see it only gives the homomorphism of ‘numerator’, and
easy to generlize to the fraction field.

Remark 12.11.

(1) Morphisms between varieties = morphisms of locally ringed spaces. Then f induces a
morphism of fields.

K(Y )→ K(X)

(s, U) 7→ (s ◦ f, f−1(U))
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Proposition 12.12. dimtX = tr. degkK(X). In particular, dimX × Y = dimX + dimY ,
where dimt means the topological dimension.

Proof. We claim that for ∅ 6= U ⊆ X, then dimU = dimx U = dimK OU,x for any x ∈ U , where
U is open in X. Let’s prove this claim.

(i)

(2) Rational Map

Definition 12.13 (Rational map). Let (X,OX) and (Y,OY ) be two varieties, A rational map

f : X 99K Y

is a morphism f : (U,OX |U) → (Y,OY ) of varieties, where (U,OX |U) is an open subvariety of
X.

Example 12.14.

(1) Cremona map

A2
k

f99K A2
k

(x1, x2) 7→ (
1

x1
,
1

x2
)

f is well-defined on D(x1x2) and induces an isomorphism

D(x1x2) ' D(y1y2)

inverse is given by
(y1, y2) 7→ (

1

y1
,
1

y2
)

recall that D(x1) ∩D(x2) = D(x1x2).

(2) Projection

A2
k

p99K A1
k

(x1, x2) 7→ (
x1
x2

)

p is well-defined on D(x2).

45



(3) x1x2 − x3x4

Let X = V (x1x2 − x3x4) ⊆ A4
k, take

X
f99K A1

k

(x1, x2, x3, x4) 7→
x1
x3

see that x1
x3

= x4
x2
, hence f is NOT well-defined on D(x2), BUT well-defined on D(x2) ∪

D(x3) ⊆ X. However, does D(x2) ∪ D(x3) is the biggest open subset such that f is well-
defined on it?

The last question of above example is a fundamental question in birational geometry, how to
find the maximal open subset such that it extends the rational map we have.
Now, we arrive at a conclusion about separateness and completeness:

(1) Separateness means if the limit exists, then it is unique.

(2) Completeness means separateness and the limit always exists!

Let’s translate the conclusion above into [Har77] version, it corresponds to the Valuation Cri-
terion, separateness means if it exists, it is unique, and properness means it exists.

13 Lecture 13.
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Remark 13.1. Two rational maps (f1, U1) and (f2, U2) are considered equal if U1∩U2 6= ∅ and

f1|U1∩U2 = f2|U1∩U2

Definition 13.2 (Locus of indeterminacy). Let (f, U) be a rational map X 99K Y . The locus
of indeterminacy of f is the smallest closed subset Z ⊆ X such that for any x ∈ X \ Z,
there exists a rational map (f ′, U ′) equal to (f, U) and x ∈ U , see the existence follows from the
Noetherian property of X and X \ Z is nonempty(which corresponds to trivial case) since we
can take Z = X \ U .

Remark 13.3. Let (f, U) : X 99K Y be a rational map between two irreducible varieties. Then
f naturally induces a homomorphism of fields

f ∗ : K(Y )→ K(X)

by
(s, V ) 7→ (s ◦ f, f−1(V ) ∩ U)

recall that we are talking about sheaf of regular functions, so we have s ◦ f .
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Definition 13.4 (Graph of rational maps). Let (f, U) be a rational map. f : X 99K Y between
irreducible varieties.

(1) The graph of f is the closure of the graph of (f, U)

Γ(f) = Γ(f, U)
Zar
⊆ X × Y

where Γ(f, U) = {(x, y) ∈ X × Y : f(x) = y} ⊆ X × Y

(2) The image of f is defined as the image of Γ(f) under the second projection, i.e.

f(X) := pr2(Γ(f))

where pr2 is the natural projection which is not the usual image in general.

Remark 13.5. f(X) 6= f(U)
Zar in general, actually f(X) ⊆ f(U)

Zar and f(X) is NOT neces-
sarily closed, see that f(X)

Zar
= f(U)

Zar.
f(X) = f(U)

Zar when X is complete. Actually, what matters is the diagram:

Γ(f)

X f(X)

pr1 pr2

f

Definition 13.6 (Birational map). LetX and Y be two irreducible varieties. A birational map
f : X 99K Y is a rational map which is dominant and f ∗ : K(Y )→ K(X) is an isomorphism.

Proposition 13.7. Let f : X 99K Y be a rational map. Then f is birational if and only if there
exists U ⊆ X and V ⊆ Y nonempty open subsets, such that

f |U : U → V

is an isomorphism.

Example 13.8.

(1) (Cremona map)

A2
k 99K A2

k

(x1, x2) 7→ (
1

x1
,
1

x2
)

(
1

y1
,
1

y2
)← (y1, y2)

(2) Normalization of affine algebraic varieties are birational maps.

Chapter VI. Projective Varieties
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13.1 §A. Projective Space

Definition 13.9. The n-dimensional projective space over k, denoted by Pnk is the equivalence
classes

(An+1
k \ {0})/ ∼

where (x0, ..., xn) ∼ (y0, ..., yn) ⇐⇒ ∃λ ∈ k× such that xi = λyi for all i. We write [x0 : · · · xn]
for the equivalence class, and call it homogeneous coordinate.

Example 13.10.

(n = 0). P0
k is a singleton [1].

(n = 1). P1
k glues the antipoints of S1.

(n = 2). We decompose it into affine pieces. Define

U0 =
{
[1 : x1 : x2] ∈ P2

R

}
' R2

Let

L∞ : = P2
R \ U0

{[0 : 1 : x2] : x2 ∈ R} ∪ {[0 : 0 : 1]}

see that {[0 : 1 : x2]|x2 ∈ R} ' R(I don’t know what’s the ' means in this case, just in set no
other structure?)

Now, let’s explain the old saying that two parallel lines on projective space meet at the infinity
point but it is not a strict proof, it is our intuition.
Let L1 = az + by + c1 and L2 = az + by + c2 with c1 6= c2.
Choose (z1, y1) = P1 ∈ L1.

If b 6= 0.

lim
P1→∞
P1∈L1

P1 = lim
z1→∞

[1 : z1 : y1]

= lim
z1→∞

[
1 : z1 :

−az1 − c1
b

]
=
[
0 : 1 : −a

b

]
which is the slope of L1.

Similiarly
lim

P2→∞
P2∈L2

P2 =
[
0 : 1 : −a

b

]
∈ L∞

hence
L1 ∩ L2 =

{[
0 : 1 : −a

b

]}
∈ L∞ ⊆ P2

R

48



If b = 0, then a 6= 0.

lim
P1→∞
P1∈L1

P1 = lim
y1→∞

[1 : z1 : y1]

= lim
y1→∞

[
1 :
−by1 − c1

a
: y1

]
= [0 : 0 : 1]

Similiar for L2, hence
L1 ∩ L2 = {[0 : 0 : 1]}

We get a beautiful describtion for L∞, the infinite far points.

Proposition 13.11. L∞ = the limits of lines in R2 at infinite such that all parallel lines meet
at a unique point at L∞.

Definition 13.12 (Projective subspaces). Pnk , n-dimensional projective space. Let F ⊆ An+1
k be

a linear subspace. Then the canonical image of F \ {0} in Pnk is called a projective subspace
of Pnk , just use orinary linear subspace to cut projective space, then you get projective subspace.

13.2 §B. Zariski Topology on Projective Space

(1) Quotient topoplogy
Let π : An+1

k \ {0} → Pnk .

Definition 13.13. The Zariski topology on Pnk is the quotient topology of the Zariski topology
on An+1

k \ {0}, i.e. Z ⊆ Pnk is closed if and only if π−1(Z) is closed.

Example 13.14. Projective subspace is closed.

(2) Homogeneous ideals
Let I ⊆ R = k[x0, x1, ..., xn] be a homogeneous ideal. Then by Hilber basis theorem

I = (F1, ..., Fr)

with each Fi is a homogeneous element. Then

V (I) = {[x0,:···:xn ] ∈ Pnk |Fi(x0, ..., xn) = 0}

= {[x0, ..., xn] ∈ Pnk |F (x0, ..., xn) = 0 ∀F ∈ Rm ∩ I}

Remark 13.15. Fi is NOT a well-defined function on Pnk ! but its zeros are well-defined.

Proposition 13.16 (Exercise). k = k and char(k) = 0.

(1) V (R) = ∅.

49



(2) V (0) = PnK .

(3) I ⊆ J are homogeneous ideals. Then V (J) ⊆ V (I).

(4) {Iα} is a family of homogeneous ideals. Then⋂
α

V (Iα) = V (
∑
α

Iα)

(5) I, J are homogeneous ideals. Then

V (I) ∪ V (J) = V (I ∩ J)

Remark 13.17. The propositions above show that the subset of Pnk of the form V (I), where I
is a homogeneous ideal, forms a topology on Pnk .

Proposition 13.18. Let Z ⊆ Pnk be a closed subset in the Zariski topology. Then Z = V (I)

for some homogeneous ideal I ⊆ k[x0, ..., xn] = R.

Corollary 13.19. The Zariski topology on Pnk is the same as the topology on Pnk defined by
homogeneous ideals.

14 Lecture 14.
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Remark 14.1. That variety Y should be π−1(V (I)) ⊆ An+1
k \ {0}.

Let’s come to the third definition of topology.
(3) Covering Pn by Ank .
For 0 ≤ i ≤ n, define

Ui = {[x0 : · · · : xi−1 : 1 : xi : · · · : xn]} ⊆ Pn

which is open since Ui = Pn \ V (xi).
We will see that Ui is isomorphic to Ank , hence we get an affine piece. Define

ϕi : Ank → Ui

(y1, ..., yn) 7→ [y1 : · · · : 1 : · · · : yn]

where ‘1’ is in the i-th term, see ϕi is bijective.

Proposition 14.2. ϕi : Ank → Ui is a homeomorphism on Zariski topology.
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Proof. Without loss of generality, we may assume i = 0, then we have a diagram:

An+1
k \ {0}

Ank Pnk

π

φ0

φ̃0

where ϕ̃0 maps (y1, ..., yn) to (1, y1, ..., yn). See that ϕ0 = π ◦ ϕ̃0 is continuous.
On the other hand, we can define the inverse morphism

ϕ0 : U0 → Ank

[x0 : · · · : xn] 7→
[
x1
x0
, ...,

xn
x0

]
hence Ank ' Ui, we get an affine piece.

Corollary 14.3. The Zariski topology of Pn is the topology induced by the open covering
Pn = ∪ni=0Ui, where ϕi : Ui → Ank , Zariski topology on Ui.

We always use the standard affine piece Ui, actually an arbitray linear form can give us an affine
piece!

Remark 14.4. Given a linear form L =
∑n

i=0 aixi, Without loss of generality, we may assume
a0 6= 0. Consider the hypersuface cut by L, which means HL = V (L) ⊆ Pn with

ϕL : Ank → Pn \HL

(y1, ..., yn) 7→
[
1−

∑n
i=1 aixi
a0

: y1 : · · · : yn
]

which gives an isomorphism to Ank !

Remark 14.5 (Basis of Zariski topology on Pn). Given F a homogeneous polynomial, consider
D(F ), then open subsets of this form can form a basis of the topology, called D(F ) standard
open subset.

14.1 §C. Structure Sheaf of Projective Space

Definition 14.6. The structure sheaf OPn is the unique sheaf on Pn such that

OPn |Ui
' OAn

k
0 ≤ i ≤ n

Proposition 14.7. Γ(D(F ),OPn) =
{

G
Fm

∣∣G homogeneous with degG = m · degF
}
, see its sec-

tions are well-defined on Pn.

Note that D(F ) ∩ Ui = D(fi) ⊆ Ank
φi−→ Ui.
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Remark 14.8. OPn = functions are locally defined by two homogeneous polynomials of the
same degree i.e. F

G
of same degree.

Theorem 14.9 (Main theorem!). The locally ringed space (Pn,OMP ) is a complete variety.

Corollary 14.10. Closed subvarieties of Pn is also complete since closed subset of a complete
space is complete.

It is a long proof.

Proof. (1) separateness:

Let’s recall the basic properties of completeness.

Recall 14.11 (Basic properties of completeness).

(1) Let f : X → Y be a morphism of varieties. If X is complete, then f(X) is closed and again
complete, closed map and image is complete(like image of compact is compact.).

(2) If X and Y are complete, then so does X × Y .

(3) If X is complete and Y ⊆ X is a closed subvariety, then Y is complete.

(4) Affine algebraic variety if complete ⇐⇒ its dimension is 0(hence finite points).

14.2 §D. Projective Varieties

Definition 14.12. A projective(resp. quasi-projective) variety is a closed subvariety(resp. va-
riety) of Pn.

Remark 14.13. Closed subvariety in Pn is also complete.

Basic facts 14.14. Let X ⊆ Pn be a projective variety, and R = ⊕∞
i=0Ri = k[x0, ..., xn]. Then

(1) Zariski topology on X.

D(F ) = {x ∈ X|F (x) 6= 0}, F ∈ Ri for some i > 0. Then it forms a basis for the Zariski
topolpgy on X.

(2) Global sections on a complete irreducible/connected variety X are only constants.

Proof. Let f ∈ Γ(X,OX), consider

f : X → k = A1
k ↪→ P1

k
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then f(X) is a closed subset of P1
k since X is complete, and f(X) = finite points by it is

closed in A1
k, and we embed A1

k ↪→ P1
k by x 7→ [1 : x], next, using X is connected, we get

f(X) is a single point since in P1
k a set of finite points is connected if and only if it is a

singleton, or we can find two disjoint closed subsets to cover it.

(3) Regular functions on D(F ).

Γ(D(F ),OX) =
{
G

Fm

∣∣∣∣ degG = m · degF, m ≥ 0 G ∈ k[x0, ..., xn] homogeneous
}/

∼

where G
Fm ∼ G′

Fm′ if G
Fm

∣∣
D(F )

= G′

Fm′

∣∣
D(F )

.

Recall 14.15. We have known that projective varieties are complete, but does any complete
variety is projective? The answer is false, Nagata gave a counterexample. However, Chow gave
his Chow’s lemma.

Lemma 14.16 (Chow’s lemma). [Mumford The Red Book Chapter I. §10] Let X be a complete
variety over an algebracially closed field. Then there exists a projective variety Y and a birational
surjective morphism

π : Y → X

hence it is not far from a complete variety to a projective variety.

For example of nonprojective complete variety, due to Hironaka, see [[Har77] Appendix B Ex-
ample 3.4.1.].

Algebraic Geometry I is over!

Let’s come to Algebraic Geometry II which concerns divisors, vector bundles and cohomoloy!
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Part II

Algebraic Geometry II
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22/10/26.

Chapter VII Vector Bundles on Varieties

References:

(1) [Har77] Chapter II §5. §6. §7.

(2) [Mus] Chapter g §11.6.

15.1 §A. Definition and Examples

Definition 15.1 (Vector bundle). A vector bundle V on a variety X is a variety with a
surjective morphism

p : V → X

such that there exists an open covering X = ∪i∈IUi(you can take a finite subcover) satisfies

(1) there exists isomorphism of varieties

ϕi : p
−1(Ui) ' Ui × kn = Ui × Ank ∀i

commuting with p, i.e.

p−1(Ui) Ui × kn

Ui

p

φi

pr1

(2) ∀i, j ∈ I, the composition

ϕi ◦ ϕ−1
j : (Ui ∩ Uj)× kn → (Ui ∩ Uj)× kn

is fiberwise k-linear, i.e. for any point x ∈ Ui ∩ Uj, the restricted morphism

ϕi ◦ ϕ−1
j : {x} × kn → {x} × kn

is an isomorphism of k-vector space(see it is an isomorphism since we can give it an inverse.).
So, although ϕi is a morphism of varieties, we still write kn rather Ank , since we want to
mention the structure of vector space.

Example 15.2.
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(1) (Tautological line bundle on Pn)

We define
OPn(−1) :=

{
[x0 : · · · : xn;λx0, ..., λxn] ∈ Pn × An+1

k

∣∣λ ∈ k}
since we can regard Pn as a set of one-dimensional subspaces of An+1

k . Then the fiber of
OPn(−1) over [l] ∈ Pn is exactly the line l in kn+1.

We claim that
p : OPn(−1)→ Pn

is a line bundle on Pn, where p is the first projection. Now, Let’s check the transition
functions.

Let Ui = D(xi) ⊆ Pn, then
ϕi : p

−1(Ui)→ Ank × k

by [
x0 : · · · : xn;λ

x0
xi
, ..., λ

xn
xi

]
7→
[
x0
xi
, ...,

x̂i
xi
, ...,

xn
xi

;λ

]
consider ψij = ϕj ◦ ϕ−1

i , we want to know the transition function, which means how does it
glue or what’s the action on k.

ϕj ◦ ϕ−1
i : Ui ∩ Uj × k → Ui ∩ Uj × k

Let’s break the map in steps:

ϕ−1
i : [x0, · · · , x̂i, · · · , xn; k] 7→

[
x0 : · · · : 1 : · · · : xn; k

x0
xi
, ..., k, ..., k

xn
xi

]
see that[

x0 : · · · : 1 : · · · : xn; k
x0
xi
, ...k, ..., k

xn
xi

]
=

[
x0
xj

: · · · : xn
xj

; k
xj
xi
· x0
xj
, ..., k

xj
xi
· xn
xj

]
then

ϕj :

[
x0 : · · · : 1 : · · · : xn; k

x0
xi
, ..., k

xn
xi

]
7→
[
x0
xj

: · · · : xn
xj

; k
xj
xi

]
hence

ψij : Ui ∩ Uj 7→
xj
xi

the action on k.

Remark 15.3. In the affine part, we always use xi
xj

to get a well-defined formula.

(2) (Hyperplane bundle)

We define
OPn(1) = dual bundle of OPn(−1)
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which means we attach the one-dimensional vector space structure of dual map of the line
l in kn to Pn.

Transition fucntion of OPn(1) is

ψ∗
ij : D(x1) ∩D(x2)→ GL1(k) = k×

by
[x0 : · · · : xn] 7→

xi
xj

(3) (Tangent bundle of a nonsingular irreducible affine variety) Let V ⊆ Ank be an irreducible
affine algebraic variety, and I(V ) = (F1, ..., Fm). We define Zariski tangent bundle TZarV as

TZarV :=

{
(x, v) ∈ V × kn

∣∣∣∣ n∑
j=1

∂Fi
∂xj

(x) · vj = 0 1 ≤ i ≤ m

}

which means equipping each point its tangent space.

For any x ∈ V , we have

TZarV,x = p−1(x) =

{
v ∈ kn

∣∣∣∣ n∑
j=1

∂Fi
∂xj

(x) · vj = 0 1 ≤ i ≤ m

}
= TxV − x ⊆ kn = Ank

where
p : TZarV → V

is the first projective. Since V is irreducible and nonsingular, we have dimTZarV,x = dimV = r.

Here are some interesting examples of vector bundles.

Example 15.4.

(1) Trivial vector bundle.

V × kn.

(2) Let V1 and V2 be vector bundles on X. Then we can construct new vector bundles using
algebraic operations.

(2.a) Direct sum.

V1 ⊕ V2 such that (V1 ⊕ V2) (x) ' V1(x)⊕ V2(x), where Vi(x) = p−1(x).

(2.b) Tensor product.
V1 ⊗ V2 such that (V1 ⊗ V2) (x) ' V1(x)⊗ V2(x).
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(2.c) Exterior power.
i ≥ 1,

∧i V1, such that (
∧i V1)(x) '

∧i(V1(x)).

(2.d) Symmetric power.
i ≥ 1, Symi V1 such that

(
Symi V1

)
(x) ' Symi(V1(x)).

(2.e) Dual bundle.
V ∗
1 such that V ∗

1 (x) ' (V1(x))
∗.

(2.f) Determinant.
detV1 such that detV1(x) '

∧r(V1(x)), where r = rank(V1).

Definition 15.5 (Line bundle). A vector bundle of rank 1 is called a line bundle.

Remark 15.6 (Transition functions).

(1) We can regard
ϕj ◦ ϕ−1

i : (Ui ∩ Uj)× kn → (Ui ∩ Uj)× kn

as a morphism, more explicitly

ψij : Ui ∩ Uj → GLn(k)

then a vector bundle of rank r over a variety is determined by the following data:

i. An open covering X = ∪Ui.

ii. A family of transition functions{
ψij : Ui ∩ Uj → GLn(k) ⊆ An

2

k

}
such that

ψjl ◦ ψij|(Ui∩Uj∩Ul) = ψil|(Ui∩Uj∩Ul) ∀i, j, l

(2) Every algebraic operation of vector bundle can be translated as an algebraic operation of
transition functions.

i. V  V ∗.

(Ui, ψij) (Ui, (ψ
−1
ij )t), wher (ψ−1

ij )t is the transposition of the inverse matrix.

ii. V  detV .

(Ui, ψij) (Ui, detψij), where detψij is the determinant of matrix.

Given a point x ∈ X, the matrix
[
∂Fi

∂xj
(x)
]

1≤i≤m
1≤j≤n

has rank n − r as V is non-singular and of

dimension r. Without loss of generality, we may assume the upper (n− r) block A has nonzero
determinant, define G = detA and let U = D(G) ⊆ V Something left
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Definition 15.7 (Homomorphism of vector bundles). Let V1 and V2 be vector bundles on X.
A homomorphism

f : V1 → V2

is a morphism of varieties commuting with projections on X i.e.

V1 V2

X

pr1

f

pr2

and f(x) := f |V1(x) : V1(x)→ V2(x) is a k-linear map of rank independent of x, which means it
is a constant rank.

Example 15.8. X = A1
k, V1 = A1

k × k, and V2 = A1
k × k, take

f : V1 → V2

by
(x, v) 7→ (x, xv)

is not a homomorphism of vector bundles since its map at 0 is a zero map of rank 0, but rank 1
at any other points.

Definition 15.9 (Pullback). Let f : X → Y be a morphism of varieties. let V be a vector
bundle on Y . Then the pullback(fiber product) f ∗V is a vector bundle on X such that

f ∗V (x) = V (f(x))

more precisely, if V is given by (Ui, ψij) then f ∗V is given by (f−1(Ui), ψij ◦ f)

Caution 15.10. Pushout may NOT be a vector bundle.

15.2 §B. Picard Group

Definition 15.11 (Picard group). Let X be a variety. The Picard group Pic(X) of X is
defined as the set of line bundles over X modulo isomorphic equivalence, which means

Pic(X) = {line bundles on X} / ∼

where L ∼ L′ if L ' L′ as vector bundles with

(a) Zero element: trivial line bundle X × k.

(b) Multiplicity: L · L′ := L⊗ L′.

(c) Inverse: L−1 = L∗, the dual bundle.
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Remark 15.12.

(1) Without loss of generality, we can always assume L and L′ are given by (Ui, ψij) and (Ui, ψ
′
ij).

Then
L⊗ L′ = (Ui, ψij ◦ ψ′

ij)

(2) Pic(X) is an abelian group.

Example 15.13 (Pic(Pn)). Pic(Pn) ' Z · OPn(1) denoted by

OPn(m) =


OPn(1)⊗m m > 0

OPn m = 0

OPn(−1)⊗(−m) m < 0

transition functions for OPn(m) : ψij = ( xi
xj
)m, m ∈ Z.

In the remaining part of this chapter, we will study these sets of objects:

Pic(X)

Divisors Inv(X)

16 Lecture 16.
22/10/31.

16.1 §C. Weil Divisors and Cartier Divisors

In this subsection, we always assume X is an irreduvible variety.
(1) Weil Divisors

Definition 16.1 (Weil divisor).

(1) A prime divisor on X is an irreducible codimension 1 closed subvariety of X.

(2) A Weil divisor D on X is a finite formal linear combination of prime divisors with coeffi-
cients in Z, i.e.

D = n1D1 + · · ·+ nrDr

with ni ∈ Z and Di are prime divisors.

(3) The group Div(X) of Weil divisors onX is the free abelian group generated by prime divisors
of X with
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(a) 0 = 0.

(b) D +D′ =
∑

(ni + n′
i)Di where D =

∑
niDi and D′ =

∑
n′
iDi.

(c) −D =
∑

(−ni)Di.

(4) A Weil divisor D is called effective if all its coefficients are non-negative, in this case, we
write D ≥ 0.

(5) Given two Weil divisors D and D′, we write D ≥ D′ if D −D′ ≥ 0.

Recall 16.2. Let X be an irreducible normal variety, for any prime divisor D of X, there exists
an affine open U ⊆ X such that

(a) U ∩D 6= ∅.

(b) ∃h ∈ Γ(U,OX) such that IU(D) = (h) ⊆ Γ(U,OX), where IU(D) is the ideal of U ∩D in U .

Definition 16.3 (Principal divisor). Let X be an irreducible normal variety. Given a non-zero
rational φ ∈ K(X), we define a Weil divisor on X as

div(φ) :=
∑
D

ordD(φ) ·D

which is the principal divisor associated to φ, D runs all prime divisors.

Remark 16.4.

(1) In the definition, the integer ordD(φ) is defined as following: given a divisor D, we choose
an affine open U of X such that

(a) U ∩D 6= ∅.

(b) IU(D) = (h), h ∈ Γ(U,OX).

write φ|U = f
g
where f, g ∈ Γ(U,OX), then we define

ordD(φ) = ordh(f)− ordh(g)

(2) div(φ) is a finite sum.

In fact, there exists an affine open U ⊆ X such that φ ∈ Γ(U,OX) and φ 6= 0, hence there
exists U ′ ⊆ U an affine open such that φ|U ′ nowhere vanishes. In particular, if ordD(φ) 6= 0,
then D ⊆ X \U ′, moreover number of D is finite, since we can decompose X \U ′ into finite
disjoint union of irreducible components by Noether property, and D has codimension 1,
hence only finite choice.

Definition 16.5 (Class group and linear equivalence).
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(1) The canonical map
div : (K(X))∗ → Div(X)

is a group homomorphism of abelian group.

(2) The class group: Cl(X) is the quotient Div(X)/ Im(div). For a Weil divisor D, we write
[D] for the class of D in Cl(X).

(3) Two Weil divisors are linearly equivalent if [D′] = [D] i.e. there exists φ ∈ K(X) such
that D = D′ + div(φ), write D ∼ D′.

(2) Cartier Divisor

Definition 16.6. Let X be an irreducible normal variety. A Weil divisor D on X is called
Cartier if D is locally principal i.e. there exists an open covering X = ∪Ui and φi ∈ K(Ui)

such that ∑
nj(Dj ∩ Ui) = D ∩ Ui = div(φi) ∀i ∈ I

where D =
∑
njDj.

Lemma 16.7 (Effective Cartier divisors). Let X be an irreducible normal variety and D =∑
niDi be an effective Cartier diviosr(since it is a Weil divisor, so we have the sense of effective

Cartier divisor) given by X = ∪Ui and φi ∈ K(Ui). Then φi ∈ Γ(U,OX), namely regular.

Proof. Since D is effective, there exists Zi ⊆ Ui of codimension ≥ 2(Why?) such that φi ∈
Γ(Ui \ Zi),OX , more, Ui are normay by X is normal. By Hartogs Extension, we have

Γ(Ui,OX)� Γ(Ui \ Zi,OX)

Recall 16.8 (Serre’s criterion). Let A be a Noetherian ring.

(1) Rk : Ap is a regular local ring for any prime ideal p of ht(p) ≤ k.

(2) Sk : depthAp ≥ inf{k, ht(p)} for any prime ideal p.

Then

(1) A is a reduced ring ⇐⇒ R0, S1 hold.

(2) A is a normal ring ⇐⇒ R1, S2 hold.

(3) A is Cohen-Macaulay ⇐⇒ Sk hold for all k.
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Example 16.9 (Weil divisors which are NOT Cartier). X = V (x1x2 − x3x4) ⊆ A4
k ⇒ X is

irreducible and normal by Serre’s criterion(if X is an irreducible normal variety, and Cohen-
Macaulay, then it is normal, we take regular sequence {x1, x2, x3 + x4}).
Consider D1 = {x1 = x3 = 0} ∩ X and D2 = {x2 = x4 = 0} ∩ X both are isomorphic to A2

k.
Then D1 ∩D2 = {0, 0, 0, 0}. Hence dimD1 = dimD2 = 2, dimD1 ∩D2 = 0.

Then D1 and D2 are not Cartier. In fact, we may assume that D1 is defined by φ ∈ Γ(U,OX)
where 0 ∈ U a open neighborhood. Then φ|D2 6= 0, however, by Krull’s principal theorem

0 = dim(D1 ∩D2) = dim(V (φ|D2)) = dimD2 − 1 = 1

it is a contradiction.

Example 16.10. Principal divisor is Cartier.

Definition 16.11. Let X be an irreducible normal variety.

(1) X is called factorial if all Weil divisors on X are Cartier.

(2) X is called Q-factorial if for any Weil divisor D, there exists m ∈ N depending on D such
that mD is Cartier.

Example 16.12.

1. Using the same argumentX = V (x1x2−x3x4) ⊆ A4
k is NOT Q-factorial, since its dimension

of D1 ∩D2 is wrong.

2. X = V (x1x2 − x23) ⊆ A3
k, consider D = {x1 = x3 = 0} ⊆ X. Then D is not Cartier,

however 2D is Cartier, which is defined as div(x1). Let’s compute it in details:

Proposition 16.13 ([Har77] Chapter II Proposition 6.11.). Let X be an irreducible normal
variety, if OX,x is a UFD for any x ∈ X, then X is factorial. In particular, if X is non-singular,
then X is factorial(since regular local ring is UFD).

Notation 16.14. The subgroup CaCl(X) of Cl(X) which generated by Cartier divisors.

Definition 16.15 (Pullback of Cartier divisors). Let f : Y → X be a morphism of irreducible
normal varieties, let D be a Cartier divisor on X given by

(i) X = ∪Ui.

(ii) φi ⊆ K(Ui) = K(X).

then the pullback f ∗D is a Cartier divisor given by

(i) Y = ∪f−1(Ui).

(ii) ψi = ϕi ◦ f ∈ K(f−1(Ui)) = K(Y ).

Remark 16.16. In general, we can NOT define the pullback of a Weil divisor.
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17 Lecture 17.
22/11/2.

17.1 §D. From Cartier Divisor to Line Bundles

Let X be an irreducible normal variety, and D be a Cartier divisor on X given by X = ∪Ui and
φi ∈ K(Ui) = K(X).
See that div(φ1)|U1∩U2 = D|U1∩U2 = div(φ2)|U1∩U2 , where we can view D|U1∩U2 as zeros and poles
of φ1 and φ2 in U1 ∩ U2, hence ϕ1

ϕ2
|U1∩U2 has no zero and pole, which means ϕ1

ϕ2
: U1 ∩ U2 → k∗.

Define ψij = ϕj
ϕi
∈ K(Ui ∩ Uj) ∀i, j. Then ψij : Ui ∩ Uj → k∗.

Hence, ψij ∈ Γ(Ui ∩ Uj,OX) and ψij nowhere vanishes.

Definition 17.1 (Line bundle associated to D). The line bundle LD on X associated to D is
the line bundle given by

(i) X = ∪Ui.

(ii) ψij = ϕj
ϕi

: Ui ∩ Uj → k∗ = GL1(k).

Picture.

Remark 17.2. Easy to see that

ψil|Ui∩Uj∩Ul
= ψjl · ψij|Ui∩Uj∩Ul

.

Definition 17.3 (Rational and global sections of line bundles). Let L be a line bundle on an
irreducible normal variety X given by the following data

(i) X = ∪Ui an open covering with L|Ui
' Ui × k.

(ii) ψij : Ui ∩ Uj → k∗ ∀i, j.

(1) A rational section of L is given by the following data:

(1.a) {si} with si ∈ K(Ui) = K(X).

(1.b) sj = ψij · si in K(Ui ∩ Uj) = K(X) ∀ i, j.

For example: Picture

(2) A global section of L is a rational section {si} such that si ∈ Γ(Ui,OX).

Picture

Remark 17.4.
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(1) {global sections of L} 1:1←→ {s : X → L morphism such that π ◦ s = IdX , π : L→ X}

(2) Let D be a Cartier divisor given by X = ∪Ui and D ∩ Ui = div φi with φi ∈ K(Ui), then
{φi} is a rational divisor, just use natural transition function. In particular, if D is effective,
then φi ∈ Γ(Ui,OX) and {φi} is a global section of LD.

Lemma 17.5. Let D be a principal divisor, then LD is isomorphisc to the trivial line bundle.

Proof.

D is principal ⇐⇒ D = div(φ) some φ ∈ K(X)

⇐⇒ LD is given by X × k.

By the lemma, we get a homomorphism of abelian groups

CaCl(X)
L−→ Pic(X)

by
[D] 7→ [LD]

and
[D +D′] 7→ [LD ⊗ LD′ ]

see it is well-defined by if D′ is principal then LD′ is trivial which is the identity element in
Pic(X).

Lemma 17.6. The homomorphism L is injective.

Proof. Let D be a Cartier divisor with

(i) X = ∪Ui.

(ii) D|Ui
= div(φi) φi ∈ K(Ui)

such that LD ' X × k as vector bundles.
Take

s : X → X × k

by
x 7→ (x, 1)

We can have a diagram:

Ui × k LD|Ui
Ui × k≃

φ̃i≃

φi≃
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Let’s define
si : Ui → k

by
x 7→ ϕ̃i

−1(x, 1) = (x, si(x)) see that si(x) 6= 0

Note that {si} is a global section of LD → X, hence

sj|Ui∩Uj
= ψij · si|Ui∩Uj

=
φj
φi
· si|Ui∩Uj

hence
sj
φj

∣∣∣∣
Ui∩Uj

=
si
φi

in K(Ui ∩ Uj) = K(X)

Define φ = ϕi
ϕj
∈ K(X), see that div(φ)|Ui

= div(φi) on Ui, hence D = div(φ).

Definition 17.7 (Cartier divisor defined by rational sections). Let s = {si} be a rational section
of a line bundle L, then we can define a Cartier divisor div(s) as following

div(s) :=
∑

D prime
ordD(s) ·D

where ordD(s) is defined as ordD(si) for Ui ∩D 6= ∅.

Remark 17.8. If D ∩ Ui 6= ∅ and D ∩ Uj 6= ∅, then D ∩ Ui ∩ Uj 6= ∅ since D is irreducible.
We have

ordD(sj) = ordD(si · ψij) = ordD(si)

hence ordD(s) is well-defined with respect to i.

Lemma 17.9. L : CaCl(X)→ Pic(X) is surjective.

Proof. Let L ∈ Pic(X) be a line bundle given by

(i) X = ∪Ui.

(ii) ψij : Ui ∩ Uj → k∗.

Define a rational section {si} ∈ LD as following:

(1) s1 : U1 → k∗ by x 7→ 1.

(2) si = ψ1i · s1 ∈ K(U1 ∩ Ui) = K(Ui) = K(X) is well-defined since ψjl · ψij = ψ1l.

Let D = div(s) be the Cartier divisor associated to {si}. Then LD is

(1) X = ∪Ui.

(2) ψ′
ij =

si
sl
=

ψ1j ·s1
ψ1i·s1 = ψij.
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Hence LD ' L.

Remark 17.10.

(1) Recall that Γ(X,OX) = k if X is irreducible and complete.

(2) We regard a line bundle LD as a data:

LD =
⊔
x∈X

Lx

where Lx is a one-dimensional k-vector space.

(3) A rational section/global section s of D is a ‘rational’/ ‘regular’ map

X
s−→
⊔
x∈X

Lx

by
x 7→ s(x) ∈ Lx or ∞ if x is a pole.

(4) A Cartier divisor can be regarded as zeros minus poles of a rational map

s : X →
⊔
x∈X

Lx

(5) CaCl(X) ' Pic(X) by
[D] 7→ [LD]

the other direction
[Div(s)]← [L]

where s is a rational section of L.

17.2 §E. Sheaf of Sections of Vector Bundles

(1) Sheaf of sections

Definition 17.11. Let π : V → X be a vector bundle. V , the sheaf of sections of V , is the
sheaf for any open subset U ⊆ X,

Γ(U,OV ) = {s : U → V morphism|π ◦ s = IdU}

Picture

Remark 17.12. If V is given by

(i) X = ∪Ui.

67



(ii) ψ : Ui ∩ Uj → GLr(k).

Then V |Ui
' sheaf of sections of Ui × kr ' O⊕r

Ui
.

(2) Sheaf of OX-modules

Definition 17.13. Let (X,OX) be a ringed space. A sheaf of OX-modules is a sheaf of
abelian groups F such that for any open subset V ⊆ X, we have a Γ(U,OX)-module structure
on F (U) and these structure are compatible with restriction maps: for any open V ⊆ U , we
have

(a · s)|V = a|V · s|V ∀a ∈ Γ(U,OX) and s ∈ Γ(U,F )

Example 17.14. The sheaf of sections V of a vector bundle over X is a OX-module.

f · s : U → V

s 7→ f(x)s(x)

since locally, the sheaf of sections is isomorphic to the free sheaf O⊕r
U , hence f · s ∈ Γ(U,OV ).

Definition 17.15. Let (X,OX) be a ringed space.

(1) Let F ,G be two sheaves of OX-modules. A morphism

ϕ : F → G

of sheaves of OX-modules is a morphism of sheaves such that for any open subset U ⊆ X

ϕU : Γ(U,F )→ Γ(U,G )

is a morphism of OX(U)-modules.

(2) A sheaf F of OX-module is locally free if there exists an open covering X = ∪Ui such that
F |Ui

' O⊕r
Ui

isomorphic as sheaves of OUi
-modules.

Example 17.16. If V is the sheaf of sections of a vector bundle, then it is locally free.

18 Lecture 18.
22/11/7.

Remark 18.1.
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(1) E = a vector bundle of rank r, given by

E = ∪Ui.

ψij : Ui ∩ Uj → GLr(k).

E∗ = the dual bundle of E given by

E∗ = ∪Ui.

ψ∗
ij = (ψ−1

ij )t : Ui ∩ Uj → GLr(k).

check that for A ∈ GL(V )  (AL)(v) := L(A−1v), where V is a vector space, v ∈ V ,
L ∈ V ∗, a linear form.

(2) In the definition of pullback of a Cartier divisor, f : X → Y a morphism between irreducible
normal varieties, D a Cartier on Y . The f ∗D is well-defined if f(X) * Supp(D) = ∪Di, or,
φi ◦ f : f−1(Ui)→ k = 0, hence

f ∗D =

X = ∪(f−1(Ui)).

ϕi = φi ◦ f = 0.

which is not a Cartier divisor.

(3) Let X be an irreducible normal variety. D ⊆ X is a prime divisor, φ ∈ K(X)∗. φ = f
g
where

f, g ∈ Γ(U,OX), IU(D) = 〈h〉.

ordh(φ) = max {m ∈ Z≥0|such that f ∈ 〈hm〉}

Here we use the Krull’s intersection theorem to guarantee that ordh(f) <∞.

Theorem 18.2 (Krull’s intersection theorem). [[AM94] Cor 10.18.] Γ(U,OU)  A is
Noetherian, (1) 6= α ⊆ A an ideal, then

⋂
n≥0

αn = 0, hence ordh(f) <∞.

18.1 §F. From Cartier Divisors to Invertible Sheaves

Definition 18.3. Inv(X) := {invertible sheaves on X}
/
∼, where L ∼ L′ if they are isomorphic

as OX-modules.

Remark 18.4. Inv(X) is an abelian group.

(1) 0 = OX .

(2) L−1 = L∗ the sheaf U 7→ HomOU
(L,OU).

(3) L·L′ := L⊗L′, where L⊗L′ is the sheaf associated to the presheaf U 7→ L(U)⊗Γ(U,OX)L
′(U).

Definition 18.5. Let X be an irreducible normal variety and let D be a Weil divisor on X, we
define a sheaf of OX-module OX(D) on X as

U → Γ(U,OX(D)) := {φ ∈ K(U)∗ = K(X)∗| div(φ)|U +D|U ≥ 0} ∪ {0} .
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Remark 18.6.

(1) Γ(U,OX(D)) : rational functions on U with restriction on zeros and poles.

zeros ≥ D−, poles ≤ D+, where D = D+ −D−

(2) In general, we want to find rational functions on X with ‘less’ poles and ‘enough’ zeros, i.e.
find φ ∈ K(X)∗ such that Zeros(φ) ≥ D− and Poles(φ) ≤ D+.

Proposition 18.7. Let X be an irreducible normal variety, D, D′ are two Weil divisors on X.
Then OX(D) ' OX(D′) as OX-modules ⇐⇒ D ∼ D′.

Proof. ⇐: Assume that D ∼ D′, hence there exists a φ ∈ K(X)∗ such that D = D′ + div(φ).
Define

ΦU : Γ(U,OX(D))→ Γ(U,OX(D′))

by
s 7→ s · φ

s · φ is well-defined by they are rational functions.

s ∈ Γ(U,OX(D))⇐⇒ div(s)|U +D|U ≥ 0

⇐⇒ div(s)|U +D′|U + div(φ)|U ≥ 0

⇐⇒ div(s · φ)|U +D′|U ≥ 0

⇐⇒ s · φ ∈ Γ(U,OX(D′))

Similiarly, we define
Φ−1 : Γ(U,OX(D′))→ Γ(U,OX(D))

by
s 7→ s

φ

check that they are inverse to each other, hence we get the isomorphism.
⇒: Assume that ϕ : OX(D) ' OX(D′) as sheaf of OX-modules. Since X is an irreducible
normal variety, we can remove a closed subset of codimension ≥ 2 such that X̃ is non-singular.
Without loss of generality, we may assume X is non-singular. Then D and D′ are Cartier. Hence
we get an open covering X = ∪Ui and φ, φ′ such that D|Ui

= div(φ) and D′|Ui
= div(φ′

i) for any
i. Let

ϕi := ϕ|Ui
: Γ(Ui,OX(D))→ Γ(Ui,OX(D′))

Claim 1. For any i, ∃!hi ∈ K(Ui)
∗ = K(X)∗ such that ϕi(·) = ·hi.
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Proof. Note that 1
ϕi
∈ Γ(Ui,OX(D)), define hi = φi · ϕ( 1

ϕi
) ∈ K(Ui)

∗. ∀s ∈ Γ(Ui,OX(D)), we
have div(s)|Ui

+D|Ui
≥ 0, hence s · φi ∈ Γ(Ui,OX). In particular, we get

ϕi(s) = ϕi

(
s · φi ·

1

φi

)
= s · ϕi · ϕ

(
1

φi

)
= s · hi ∈ Γ(Ui,OX(D′))

Claim 2. ∀i, j, hi = hj ∈ K(X)∗, we denote it by h.

Proof. Assume X is irreducible, hence Ui ∩ Uj 6= ∅, and ϕi|Ui∩Uj
= ϕj|Ui∩Uj

Claim 3. D = D′ + div(h).

Corollary 18.8. Let X be an irreducible normal variety, D is a Weil divisor on X. Then D is
Cartier ⇐⇒ OX(D) is an invertible sheaf.

Proof. ⇒: Assume that D is Cartier, then D =

X = ∪Ui

D|Ui
= div(φi)|Ui

φi ∈ K(X)
.

See that
OX(D)|Ui

' 1

φi
OUi
' OUi

⇐: Assume OX(D) is invertible, hence there exists an open covering ∪Ui such that OX(D)|Ui
'

OUi
, by the proposition above, we get D|Ui

∼ 0, so D is Cartier.

18.2 §G. Summary

In diagram: Left.
Let X be an irreducible normal variety.

(1) Pic(X) = {line bundles on X}/ ∼, where ∼ means isomorphism of line bundles.

(2) CaCl(X) = {Cartier divisors on X}/ ∼, where ∼ means linearly equivalence.

(3) Inv(X) = {invertible sheaves on X}/ ∼, where ∼ means isomorphism of invertible sheaves.

(4) The diagr[AM94] is commutative of homomorphisms of abelian groups.
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18.3 §H. Global Sections on Linear Systems

Let X be an irreducible normal variety.

D a Cartier divisor on X given by

X = ∪Ui

D|Ui
= div(φi), φi ∈ K(Ui)

∗ = K(X)∗
.

LD = line bundle associated to D.
OX(D) = invertible sheaf associated to D.

Remark 18.9 (From global sections of LD to global sections of OX(D)). Consider

Definition 18.10 (Complete linear system). The complete linear system associated to D is
the set

|D| := {D′ ∈ Div(X)|0 ≤ D′ and D′ ∼ D}

Convention 18.11. If V is a vector space, we write P(V ) for P (V \ {0}), the projective space
of V .

Definition 18.12. We define
Φ : P(Γ(X,LD))→ |D|

by
s̄ 7→ div(s)

which is well-defined since div(s) = div(λs) for λ ∈ k∗.

See that

s = {si}i∈I ⇒ div(s)|Ui
= div(si) = div(φ) +D|Ui

≥ 0

⇒ div(s)|Ui
= D′|Ui

≥ 0 where D′ = div(φ) +D

⇒ D′ ≥ 0

⇒ D′ ∈ |D|

19 Lecture 19.
22/11/9.

Proposition 19.1.

(1) Φ is surjective.

(2) If X is projective, then Φ is injective.

(3) If 0 6= s1 ∈ Γ(X,LD1) and 0 6= s2 ∈ Γ(X,LD2), then s1 ⊗ s2 ∈ Γ(X,LD1 ⊗ LD2), with
div(s1 ⊗ s2) = div(s1) + div(s2) ∈ |D1 +D2|.
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Proof.

(1) Given 0 ≤ D′ ∈ |D|, then ∃0 6= φ ∈ K(X) such that D′ = D + div(φ), hence φ ∈

Γ(X,OX(D)), which means {φ·φi} defines a global section of LD, where

X = ∪Ui

D|Ui
= div(φi)|Ui

∀i ∈ I

Note that φ · φj = ϕj
ϕi
(φ · φi).

(2) Assume X is projective, then Γ(X,OX) = k. If div(s1) = div(s2), then 0 6= s1
s2
∈ K(X) is

regular, hence [s1] = [s2] in P(Γ(X,LD))( affine case is false, see in D(f), 1
f
nowhere vanishes

but not a constant).

(3) Easy by definition.

Remark 19.2. (1)+(2) means that for an irreducible normal projective variety X and a Cartier
divisor D on X, the study of |D| is equivalent to the study of the group of global sections of
LD, i.e. Γ(X,LD).

19.1 §I. Ample and Very Ample Line Bundles

(1) Global section of OPn(m).

Recall 19.3. [x0 : · · · : xn] on Pn, s = k[x0, ..., xn] and Ui = D(xi) = {xi 6= 0} ⊆ Pn. The line
bundle OPn(m) is given by the data

(i) X = ∪Ui

(ii) ψij : Ui ∩ Uj → k∗ [x0 : · · · : xn] 7→ xmi
xmj

Proposition 19.4.

Γ(Pn,OPn(m)) =

Sm m ≥ 0

0 m < 0

Lemma 19.5. Let 0 6= s ∈ Γ(Pn,OPn(m) be a global section given by


Pn = ∪Ui

si =
Fi

xdi
Fi ∈ Sd

sj|Ui∩Uj
=

xmi
xmj
· si|Ui∩Uj

(2) Base Locus of Linear System Let X be an irreducible normal variety, D a Cartier divisor
on X, and Φ : P (Γ(X,LD))→ |D|.

Definition 19.6 (Linear system). A linear system associated to D is the image of projective
linear k-subspace of P (Γ(X,LD)).
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Definition 19.7 (Base locus of global sections of line bundle). Let X be a variety, L a line
bundle over X, W ⊆ Γ(X,L) a liner k-subspace. Then the base locus of W is defined as

Bs(W ) := {x ∈ X|s(x) = 0 ∀s ∈ W}

We say that W is base point free if Bs(W ) = ∅.

Remark 19.8. If dimW <∞ with s1, ..., sr a basis, then Bs(W ) = V (s1) ∩ · · · ∩ V (sr), hence
closed.

Definition 19.9 (Base locus of linear system). Let X be an irreducible normal variety, D is a
Cartier divisor over X, W ⊆ |D| a linear system. The base locus of W is

Bs(W ) := {x ∈ X|x ∈ Supp(D′) ∀D′ ∈ W}

All linearly equivalent divisors must pass through x, hence you can’t move divisors to avoid x.
We say W is base point free if Bs(W ) = ∅.

Remark 19.10. Let W ⊆ |D| be a linear system corresponding to linear k-subspace W ′ ⊆
Γ(X,LD). Then Bs(W ) = Bs(W ′)

Γ(X,LD)→ |D|

by
s 7→ div(s)

(3) Morphism to projective space defined by linear systems
Let L be a line bundle over a variety X. Take W ⊆ Γ(X,L) a base point free finite dimensional
linear k-subspace, we want to define a morphism X → P(W∨) using

(a) First definition using a basis of W .

Let s0, ..., sN be a basis of W over k. Then we have W∨ ' kN+1 using the dual basis {s∨i }.

Define
ΦW : X → PN

by
x 7→ [s0(x) : · · · : sN(x)]

need to check ΦW is well-defined.

Lemma 19.11. ΦW is well-defined.

Remark 19.12. Since W is base point free, for any x ∈ X, there exists some i such that
si(x) 6= 0, hence ΦW is a morphism.
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(b) Second definition without using a basis of W .

For x ∈ X, we define Wx := {s ∈ W |s(x) = 0}, and a valuation map

νx : W → k

by
s 7→ s(x)

Bs(W ) = ∅ ⇒ νx is a surjective k-linear map, hence Wx ⊆ W is a linear k-subspcae of
codimension 1.

Consider (W/Wx)
∨ := W⊥

x ⊆ W∨, the annihilation of Wx, is an one-dimensional linear
k-subspace, where W⊥

x = {l ∈ W∨| l|Wx = 0}.

Then, we define
ΦW : X → P(W∨)

by
x 7→ W⊥

x

Exercise 19.13. The two definition of ΦW coincide.

(c) Morphisms defined by linear system.

Let X be an irreducible normal variety, D a Cartier divisor on X, |W | ⊆ D a base point
free finite dimensional k-linear subspace corresponding to W ′ ⊆ Γ(X,LD). Then we define

Φ|W | := ΦW ′ : X → P((W ′)∨)

(d) Rational map to projective space.

W ⊆ Γ(X,L), a finite dimensional linear k-subspace, then

Φ|W | : X 99K P(W∨)

is the rational map given by

Φ|W | : X \ Bs(W )→ P(W∨)

by
W ′ = Im(Γ(X,L))

res−→ Γ(X \ Bs(W ), L)

(4) Ample and very ample line bundles

75



Definition 19.14 (Very ample line bundle). Let L be a line bundle on a variety X. We say
that L is very ample if there exists W ⊆ Γ(X,L), a base point free linear k-subspace and a
subvariety Z ⊆ P(W∨) such that

Φ|W | : X → P(W∨)

induces an isomorphism
Φ|W | : X ' Z

Example 19.15.

(1) OPn(1) is very ample.

Γ(OPn ,OPn(1)) = S1, choose x0 : · · · : xn as a basis, see

Pn → P (W∨)

by
[x0 : · · · : xn] 7→ [x0 : · · · : xn]

where xi on the right is the dual map.

(2) Choose a subvariety X ⊂ Pn, then OPn(1)|X is very ample.

(3) OAn
k
is very ample.

take 1, Y1, ..., Yn ∈ Γ(Ank ,OAn
k
), W = spac{1, Y1, ..., Yn}, see

Ank → Pn

by
(y1, ..., yn) 7→ [1 : y1 : · · · : yn]

Definition 19.16 (Ample line bundle). Let L be a line bundle over a variety X, we say L is
ample if there exists m ∈ Z+ such that L⊗n is very ample.

Definition 19.17 (Ample and very ample Cartier divisors). LetD be a Cartier on an irreducible
normal variety X, we say D is ample(resp. very ample) if LD is ample(resp. very ample).

Remark 19.18.

(1) D is ample⇐⇒ mD is very ample, hence we can define ampleness for Q-Cartier divisor, i.e.
a Q-Cartier divisor is ample if there exists m such that mD is a very ample Cartier divisor.

(2)
{ample line bundles on X} 1:1←→ {embedding X into a projective space}

Example 19.19.
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(1) (Linear projective space)

Let L ⊆ Pn be a projective linear subspace of dimension r. There exists L1, ..., Ln−r linearly
independent linear functions such that V (L) = (L1, ..., Ln−r)(viewed as a linear system).
Then the projective form is defined to be the rational map

Pn
πL99K Pn−r−1

k

by
x 7→ [L1(x) : · · · : Ln−r(x)]

πL is regular on Pn \ L.

(2) F0, ..., Fr ∈ Γ(Pn,OPn(d)), k-linearly independent, W = span{F0, ..., Fr}, see that

ΦW : Pn 99K P(W∨)

by
[x0 : · · · : xn] 7→ [F0(x) : · · · : Fr(x)]

(3) (Veronese embedding)

W n
d = Γ(Pn,OPn(d)) with d ≥ 1. Then the d-th Vernoese embedding is the morphism

Pn
νd−→ PN

by
[x0 : · · · : xn] 7→ [xd0 : x

d−1
0 x1 : · · · : xdn]

where N = dim (Pn,OPn(d)) − 1 = ( n+dn ) − 1. Indeed, it is an embedding which means
Pn ' Im(νd).

We can also view it as for d ∈ Z>0, W n
d = Γ(Pn,OPn(d)) = Sd, then νd = Φ|Wn

d |.

20 Lecture 20.
22/11/14.
Continue last lecture.

(4) (Plane conics)

Consider
Φ|W 1

2 | : P1 → P2

by
[x0 : x1] 7→ [x20 : x0x1 : x

2
1]

Let Z be the image Φ|W 1
2 | (P

1). Then

I(Z) =
(
Y 2
1 − Y0Y2

)
⊆ P3
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(4) (Twisted cubic)

Consider
Φ|W 1

2 | : P1 → P3

by
[x0 : x1] 7→ [x30 : x

2
0x1 : x0x

2
1 : x

3
1]

Let Z be the image Φ|W 1
2 | (P

1) ⊆ P3. Then Z is called the twisted cubic and

I(Z) =
(
Y0Y3 − Y1Y2, Y 2

1 − Y0Y2, Y 2
2 − Y1Y3

)
(4) (Segre embedding)

Pn1 × Pn2 Pn2

Pn1

pr1

pr2

OPn1 ×OPn2 (d1, d2) = pr1OPn1 (d1)⊗ pr2OPn2 (d2) with d1, d2 ∈ Z. We claim that

Wd1,d
n1,n2
2

:= Γ (Pn1 × Pn2 ,OPn1 ×OPn2 (d1, d2)) = Γ(Pn1 ,OPn1 (d1))⊗ Γ(Pn2 ,OPn1 (d2))

Consider
Φ|Wn1,n2

1,1 | : Pn1 × Pn2 → P(n1+1)(n2+1)−1

by
[x0 : · · · : xn1 ]× [y0 : · · · : yn2 ] 7→ [x0y0 : x0y1 : · · · : xn1yn2 ]

is called the Segre embedding of Pn1 × Pn2 .

Remark 20.1. Let L be a very ample line bundle, there exists W ⊆ Γ(X,L) a base point free
finite dimensional k-linear subspace with

Φ|W | : X ' Z ⊆ PN

where Z is a subvariety, then L ' Φ|W |OPN (1)

20.1 §J. Basic Properties of Ample Line Bundles

(1) Quasi-projective varities

Definition 20.2.

A variety X is quasi-projective⇐⇒ there exists an isomorphism ϕ : X ' Z ⊆ Pn where Z is a subvariety

⇐⇒ there exists an ample line bundle on X
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Recall that Hironaka says there exists complete varieties that are not projective, hence there
exists varieties having no ample line bundle.
(2) Twisting by Globally Generated Line Bundles

Definition 20.3. A line bundle L is globally generated if Bs(Γ(X,L)) = ∅.

Remark 20.4. By Noetherian property of X, L is globally generated ⇐⇒ there exists an
W ⊆ Γ(X,L) finite dimensional such that Bs(W ) = ∅.

Proposition 20.5.

(1) L is very ample and L′ is globally generated ⇒ L⊗ L′ is very ample.

(2) L and L′ are globally generated ⇒ L⊗ L′ is globally generated.

(3) L is ample and L′ is globally generated ⇒ L⊗ L′ is ample.

Fact 20.6. The graph of morphism is closed. More precisely, if f : X → Y is a morphism of
varieties, then Γf := {x, f(x) ∈ X × Y |x ∈ X} ⊆ X × Y is a closed subset. Because

Γf = Φ−1(∆Y ) where ∆Y is closed.

by

Φ : X × Y (f,Id)−→ Y × Y
closed
⊇ ∆Y diagonal

(x, y) 7→ (f(x), y)

hence Γ ⊆ X × Y is closed.

Proof.

(1) Without loss of generality, we choose W ⊆ Γ(X,L),W ′ ⊆ Γ(X,L′) such that

(a) Φ|W | : X ' Z ⊆ PN1 an isomorphism.

(b) Φ|W ′| : X → PN2 a morphism.

Then set W = W ⊗W ′ ⊆ Γ(X,L⊗ L′). See that

Φ : X PN1 × PN2

Z ⊆ PN1

Φ|W |

(Φ|W |,Φ|W ′|)

≃

Denote Y = Φ(X) ⊆ PN1 × PN2 , is it locally closed? See Y = Φ(X) = Γf
closed
⊆ Z × PN2 ,

where f := Φ|W ′| ◦ Φ−1
W : Z → PN2 . Z × PN2 ⊆ PN1 × PN2 is locally closed since Z ⊆ PN1 is

locally closed. Hence Γf is locally closed in PN1 × PN2 .
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(2) ∀x ∈ X take s1 ∈ Γ(X,L) and s2 ∈ Γ(X,L′) such that si(x) 6= 0, then s1⊗s2 ∈ Γ(X,L⊗L′)

and (s1 ⊗ s2)(x) = s1(x)⊗ s2(x) 6= 0.

(3)

L is ample ⇐⇒ ∃m ∈ Z>0 such that L⊗m is very ample
(1)⇒ L⊗m ⊗ L′ is very ample
(1)+(2)⇒ (L⊗ L′)

⊗m
= L⊗m ⊗ L⊗m =

(
L⊗m ⊗ L′)⊗ L′⊗(m−1) is very ample

⇒ L⊗ L′ is ample

(3) Twisting an Ample Line Bundle

Lemma 20.7 (Extension of global sections, [Har77] Chapter II lem 5.14.). Let X ⊆ PN be
a quasi-projective variety, L = OPn(1)|X . Given a homogeneous polynomial F ∈ Γ(X,L⊗d)

of degree d > 0, and a local section s ∈ Γ(D(F ), L). Then there exists n ∈ Z>0 such that
F n⊗s ∈ Γ(D(F ), L⊗nd⊗L′) extends to a section s̃ ∈ Γ(X,L⊗nd⊗L′) such that s̃|D(F ) = F n⊗s.

Idea of proof. s ∈ Γ(D(F ), L′). Thus we can view s as a rational section of L′ with pole
⊆ V (F ), take n large enough such that F ns has no pole.

Proposition 20.8. L an ample line bundle, L′ an arbitray line bundle. Then there exists
m ∈ Z>0 such that L⊗m ⊗ L′ is globally generated.

Proof.

Step 1. Reduce to the case where L is very ample.

Since there exists m ∈ Z>0 such that L⊗m is very ample. If there exists m′ ∈ Z>0 such
that (L⊗m)

⊗m′
⊗ L′ is globally generated, then L⊗mm′ ⊗ L′ is globally generated.

Step 2. Reduce to point.

More precisely, it is enough to show that for ∀x ∈ X there exists m ∈ Z>0 such that
there exists s ∈ Γ(X,L⊗m ⊗ L′) with s(x) 6= 0.

Indeed, as L is very ample, for any m ∈ Z>0, we have Bs (Γ(X,L⊗mx+m ⊗ L′)) ⊆
Bs (Γ(X,L⊗mx ⊗ L′)). See that Γ(X,L⊗mx ⊗ L′)⊗ Γ(X,L⊗m) ⊆left

Corollary 20.9. Let L be an ample line bundle over a variety X.

(1) ∃n0 > 0 such that L⊗n is globally generated for any m > n0.
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(2) ∃m0 > 0 such that L⊗m is very ample for any m > m0.

Proof.

(1) Assuming the contracting that there exists ni → +∞ such that L⊗ni is NOT globally
generated. On the otherhand, there exists m ∈ Z>0 such that L⊗m is very ample. After
passing to a subsequence, we may assume ni = rim + c with ri → +∞ 1 ≤ c ≤ m− 1. By
the proposition above, there exists mc ∈ Z>0 such that L⊗m·mc ⊗ L⊗c is globally generated
⇒ if r1 > mc then L⊗n1 = L⊗(r1−mc)m ⊗ Lm·mc+c is globally generated.

(2) Takem0 = m+n0 where L⊗m is very ample⇒ L⊗m′
= L⊗m︸︷︷︸

very ample

⊗L⊗m′−m︸ ︷︷ ︸
g.g.

for m′ ≥ m+n0 =

m0, hence L⊗m is very ample.

21 Lecture 21.
22/11/16.

Corollary 21.1. Let L be an ample line bundle and L′ be an arbitary line bundle, then

(1) ∃n0 such that L⊗n ⊗ L′ is globally generated for any n ≥ n0.

(2) ∃m0 such that L⊗m ⊗ L′ is ample for any m ≥ m0.

(3) ∃r0 such that L⊗r ⊗ L′ is very ample for any r ≥ r0.

Proof. From Corollary 20.9, we know there exists n′ ∈ Z>0 such that L⊗n′ ⊗ L′ is globally
generated. Fined n′′ ∈ Z>0 such that L⊗n is very ample for ∀n ≥ n′′, hence L⊗n is globally
generated for ∀n ≥ n′′, and thus L⊗n ⊗ L′ is globally generated for ∀n ≥ n′ + n′′(by g.g.⊗ g.g.
is g.g.).

Chapert VIII Quasi-coherent and Coherent Sheaves

References:

(1) [Har77] Chapter II, §5.

(2) Mumford Chapter III, §1, §2.

(3) [Mus] Chapter 8.
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21.1 §A. Sheaves of Modules: Definition and Examples

(1) Recall: definition

Definition 21.2 (Sheaf of OX-modules). Let (X,OX) be a ringed space. A sheaf of OX-
modules is a sheaf of abelian groups F such that for any open subset V ⊆ X, we have a
Γ(U.OX)-module structure on F (U) and these structure are compatible with restriction maps:
for any open V ⊆ U , we have

(a · s)|V = a|V · s|V ∀a ∈ Γ(U,OX) and s ∈ F (U,OX)

Remark 21.3.

(1) A sheaf of OX-modules F is locally free ⇐⇒: ∃r ∈ Z>0, there exists an open covering
X = ∪Ui such that F |Ui

' O⊕r
Ui

as OX-modules, moreover, we have

{locally free sheaves} ←→ {vector bundles}

(2) The quotient of a locally free sheaf may by NOT locally free!

(2) Ideal sheaves

Definition 21.4 (Sheaf of ideals). (X,OX) a ringed space. A sheaf of ideals on X is a sheaf
of OX-modules I , which is a subsheaf of OX , i.e. ∀U ⊆ X an open subset, Γ(U,I ), Γ(U,I )

is an ideal of Γ(U,OX).

Example 21.5.

(1) (X,OX) is a variety, Z ⊆ X a closed subset. Define the sheaf of ideals IZ associated to Z
as following:

Γ(U,IZ) = {s ∈ Γ(U,OX)|s|Z∩U ≡ 0} for ∀U ⊆ X an open subset

(2) X = A2
k, x = (0, 0) ∈ X. Consider the sheaf of ideal Ix, (x1, x2) coordinate of A2

k, see that

the stalk (Ix)x′ =

OX,x′ x′ 6= x

〈x1, x2〉 · OX,x x′ = x

In particular, Ix is NOT locally free!

(3) X = A2
k, x = (0, 0) ∈ X. Define a sheaf of ideal I as following:

• x /∈ U ⊆ X open subset, Γ(U,I ) = Γ(U,OX).

• x ∈ U ⊆ X open subset, Γ(U,I ) = {s ∈ Γ(U,OX)|sx ∈ m2
x}
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See that stalk Ix′ =

OX,x′ x′ 6= x

〈x21, x1x2, x22〉 · OX,x x′ = x

(4) X an irreducible normal variety, D an effective Weil divisor. Recall we have defined OX(−D)

as following

∀U ⊆ X open subset, Γ(U,OX(−D)) = {0 6= φ ∈ K(X)| div(φ)|U + (−D)|U ≥ 0} ∪ {0}

As D is effective, hence Γ(U,OX(−D)) ⊆ Γ(U,OX) is an ideal(you may use the property of
DVR), and thus, OX(−D) is a sheaf of ideals.

Fact 21.6. If D =
∑n

i=1Di with Di distinct prime divisor. Then OX(−D) = ID as ∪ni=1Di is
closed in X. Since for any open subset U ⊆ X, we have

Γ(U,ID) = {s ∈ Γ(U,OX)|s|U∩D = 0}

which means div(s)|U −D|U ≥ 0, hence ID ⊆ OX(−D). On the other hand,

Γ(U,OX(−D)) = {0 6= φ ∈ K(X)| div(φ)|U −D|U ≥} ∪ {0}

which means φ ∈ Γ(U,OX) and φ|D∩U = 0, hence Γ(U,OX(−D)) ⊆ Γ(U,ID).
In all, Γ(U,ID) = Γ(U,OX(−D)).

(3) Algebraic operations of sheaves of OX-modules

(a) Tensor product

F ⊗OX
G is the sheaf associated to the presheaf U 7→ Γ(U,F )⊗Γ(U,OX) Γ(U,G ).

(b) Direct sum

The sheaf F ⊕ G : U 7→ Γ(U,F )⊕ Γ(U,G )(it is already a sheaf).

(c) Symmetric power

For m ∈ Z>0. Symm F is the shaef associated to the presheaf U 7→ Symm
Γ(U,OX) Γ(U,F ).

(d) Exterior power

For m ∈ Z>0, ∧mF is the sheaf associated to the presheaf U 7→ ∧mΓ(U,OX)Γ(U,F ).

(e) Hom-sheaf

H omOX
(F ,G ) : U 7→ HomOX |U (F |U ,G |U).

(f) Dual sheaf

F ∗ := H omOX
(F ,OX).
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Remark 21.7.

(1) Taking stalks commutates with tensor product, direct sum, symmetric power, exterior power.

(2) H om-sheaf is ‘very bad’ ! It does not commutate with taking stalk. In particular, we have
(F ∗)∗ 6= F !

Recall 21.8. Recall that the constant sheaf A is the sheafification of the constant presheaf
whose value is A, moreover, Ax, the stalk of A at x, is A.

Example 21.9. X = [0, 1] with cofinite topology. OX = Z constant sheaf, o ∈ X.

(a) F = skyscraper sheaf Zo at o, consider H omZ (Zo|U ,Z|U) = 0left

(b) F ,G = extension of the constant sheaf Z on X \{o}. Fo = Go = 0, hence Hom (Fo,Go) = 0.
But Hom(Z,Z) ⊆ Hom (F ,G )o.

(4) Base change
f : (Y,OY )→ (X,OX) a morphism of ringed space.

(a) Let F be a OX-module. The pull-back f ∗F is a sheaf of OY -modules on Y defined as
following:

(i) f# : OX → f∗OY induces f−1OX → OY i.e. OY is a sheaf of f−1OX-module.

(ii) Then OX-module structure induces a f−1OX-module structure of f−1F .

Then f ∗F := f−1F ⊗f−1OX
OY .

Caution 21.10. f ∗ 6= f−1, f ∗ = (⊗f−1OX
OY ) ◦ f−1, where ◦f−1 is an exact functor and

⊗f−1OX
OY is NOT exact in general.

(b) Push-forward

Let G be a OY -module. For ∀U ⊆ X open, Γ(U,OX)
f#−→ Γ(f−1U,OY ) and Γ (f−1U,G )

has a Γ (f−1U,OY )-module structure, see that Γ(f−1U,G ) = Γ(U, f∗G ), hence it has a
Γ(U,OX)-module structure, which means f∗G is a OX-module.

Proposition 21.11 (Exercise). (X,OX)
f−→ (Y,OY )

g−→ (Z,OZ) morphisms of ringed spaces.

(1) (g ◦ f)∗ = g∗ ◦ f∗.

(2) (g ◦ f)∗ = f ∗ ◦ g∗.

Remark 21.12. f : (Y,OY )→ (X,OX) morphism of ringed spaces.
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(1) Pull-back of sections

Let F be a OX-module. Then, ∀U ⊆ X open, we have

Γ(U,F )→ Γ(f−1U, f−1F )→ Γ(f−1U, f ∗F )

by
s 7→ s 7→ s⊗ 1

In particular, we have Γ(X,F )→ Γ(Y, f ∗F ).

(2) Pull-back is compatible with direct sum, tensor product, exterior power, symmetric power,
e.g.

f ∗ (F ⊕ G ) f ∗ (F ⊗OX
G = f ∗F ⊗OY

f ∗G )

But, pull-back is NOT compatible with H om!!

(3) Push-forward is also ‘very bad’. It is not compatible with algebraic operations.

21.2 §B. Quasi-coherent Sheaves on Affine Varieties

X = affine algebraic variety, A = Γ(X,OX) the coordinate ring of X.
(1) Definition

Recall 21.13 (Localization of A-modules). Let M be an A-module.

(1) ∀x ∈ X, define Mx = Mpx = M ⊗A Apx , where px ⊆ A is the ideal of x i.e. px = {f ∈
A|f(x) = 0}.

(2) 0 6= f ∈ A, define Mf =M ⊗A Af .

Remark 21.14.

(1) The elements of Mx is a formal fraction{
m

f
|m ∈M,n ∈ Z≥0, f ∈ A and f /∈ px

}/
∼

where
m

f
∼ m′

f ′ ⇐⇒ ∃g ∈ A such thatg ∈ px and g(f ′m− fm′) = 0 in M.

(2) The elements of Mf is a formal fraction{
m

fn
|m ∈M,n ∈ Z≥0

}/
∼

where
m

fn
∼ m′

fn′ ⇐⇒ ∃r ∈ Z≥0 such thatf r(fn′
m− fnm′) = 0 in M
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Clearly, we have a natural morphism: ∀0 6= f ∈ A

Mf →Mx, x ∈ D(f) ⊆ X

by [
m

fn

]
7→
[
m

fn

]
Definition 21.15 (OX-module associated to M). Let M be an A-module. Then the OX-
module M̃ associated to M is defined as following:

∀U ⊆ X open, U 7→ Γ(U, M̃) =

{
s : U →

⊔
x∈U

Mx

}

where s(x) ∈ Mx for any x. And for any x ∈ U , there exists 0 6= fx ∈ A such that fx(x) 6= 0

and mx ∈M , nx ∈ Z≥0 such that s(x′) = mx

fnx
x

for any x′ ∈ D(f) ∩ U .

Lemma 21.16.

(1) OX = Ã as A-module.

(2) For any 0 6= f ∈ A, Γ
(
D(f), M̃

)
=Mf .

Definition 21.17. Let X be an affine algebraic variety. A = Γ(X,OX), F a OX-module.

(1) F is called quasi-coherent if there exists an A-module M such that F ' M̃ as OX-
modules.

(2) F is called coherent if there exists a finitely generated A-module M such that F ' M̃ as
OX-modules.

(2) Algebraic operations of modules

Proposition 21.18. Let X be an affine algebraic variety. A = Γ(X,OX).

(i) {Mi}i∈I a family of A-modules.
˜(⊕i∈IMi) = ⊕i∈IM̃i

(ii) M,N two A-modules.
˜(M ⊗A N) = M̃ ⊗OX

Ñ .

(iii) M an A-module, p ∈ Z>0.
˜(
∧pM) =

∧p M̃ .

(iv) M an A-module, p ∈ Z>0.
˜(SympM) = Symp

(
M̃
)
.
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(v) φ : M → N a homomorphism of A-modules  φ̃ : M̃ → Ñ morphism of OX-modules.
Then k̃erφ = ker

(
φ̃
)
, ĩm (φ) = im

(
φ̃
)
, ˜coker (φ) = coker

(
φ̃
)
.

Proposition 21.19. Let X be an affine algebraic variety. A = Γ(X,OX). Let M , N be two
A-modules. Then

Γ
(
X,H omOX

(
M̃, Ñ

))
:= HomOX

(
M̃, Ñ

)
= HomA (M,N)

In particular, if M is a finitely generated A-module, then ˜HomA(M,N) = H omOX

(
M̃, Ñ

)
,

i.e. Hom commutes with sheafification of modules only if the source space is finitely generated!!

Proof.

• Given ϕ ∈ HomOX

(
M̃, Ñ

)
, then ϕX : Γ

(
X, M̃

)
→ Γ

(
X, Ñ

)
⇒ ϕX ∈ HomA (M,N).

• Given ϕ ∈ HomA (M,N), then ϕ̃ : M̃ → Ñ is morphism of OX-modules, we have

by
m

fn
7→ ϕ(m)

fn

is a homomorpihsm of Γ (D(f),OX)-modules, which is Af -modules.

• Assume thatM is finitely generated. We need to show that ˜HomA (M,N) = H omOX

(
M̃, Ñ

)
.

It is enough to show that H omOX

(
M̃, Ñ

)
is quasi-coherent. Then we need to prove that for

any 0 6= f ∈ A, we have

22 Lecture 22.
22/11/21.
(3) Base change
Let (f, f#) : (Y,OY ) → (X,OX) be a morphism of affine algebraic varieties. A = Γ (Y,OY ),
B = Γ (X,OX). We have

f# : B → A

by
s 7→ s ◦ f

Proposition 22.1.

(1) Let M be an A-module. Then f∗M̃ = M̃ , where the first one is the sheafification as an
A-module, the second one is the sheafification as an B-module.
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(2) Let N be an B-module. Then f ∗Ñ = Ñ ⊗B A, where the first one is the sheafification as
an B-module, the second is the sheafification as an A-module.

Remark 22.2. Let f : Y → X be a morphism of affine varieties.

(1) F is a auasi-coherent(resp. coherent) OX-module, then f ∗F is quasi-coherent(resp. coher-
ent).

(2) G is a quasi-coherent OY -module, then f∗G is quasi-coherent.

(3) But, even though G is coherent, f∗G may be NOT coherent, because if we have B → A, M
is a finitely generated A-module, we can not get M is a finitely generated B-module.

22.1 §C. Quasi-coherent and Coherent Sheaves on Varieties

Definition 22.3. Let (X,OX) be a variety. A sheaf F of OX-modules is called quasi-
coherent(resp. coherent) if

(1) there exists an affine open covering X =
⋃
i∈I Ui.

(2) ∀i ∈ I, F |Ui
is quasi-coherent(resp. coherent).

Remark 22.4.

(1) U ⊆ X open subset of a variety. F is an OX-module, then F |U := i∗F = i−1F , where
i : U → X is the natural inclusion, see that both i∗F and i−1F has a structure of OX-
modules.

(2) Let F be a sheaf of OX-modules over a variety (X,OX). Then F is quasi-coherent(resp.
coherent) ⇐⇒ for any U ⊆ X affine open subset, F |U is quasi-coherent(resp. coherent).
In particular, if X is affine, then the definition above coincides with the one given in the
previous section.

Idea of the proof: [[Har77] , II, Prop. 5.4] Without loss of generality, we may assume
X = U is affine. X = ∪D(fi) such that F |D(fi) is quasi-coherent(resp. coherent) for
0 6= fi ∈ A = Γ(X,OX). Set M = Γ(X,F ). Then there exists a natural morphism of
OX-modules M̃ → F . It is enough to show

Γ
(
D(fi), M̃

)
=Mfi ' Γ (D(fi),F )

Example 22.5.

(1) OX is coherent.

(2) A locally free sheaf is coherent.
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Proposition 22.6 (Closed under algebraic operators). Let (X,OX) be a variety.

(1) {Fi}i∈I a family of quasi-coherent sheaves, then ⊕i∈IFi is quasi-coherent.

(2) {Fi}i∈I a family of coherent sheaves + I finite ⇒ ⊕i∈IFi is coherent.

(3) F , G quasi-coherent(resp. coherent), then F ⊗ G is quasi-coherent(resp. coherent).

(4) F quasi-coherent(resp. coherent), then
∧p F and Symp F is quasi-coherent(resp. coher-

ent).

(5) φ : F → G a morphism of quasi-coherent(resp. coherent) sheaves, then ker(φ), im(φ) and
coker(φ) are quasi-coherent(resp. coherent).

(6) F coherent, G quasi-coherent(resp. coherent), then H omOX
(F ,G ) is quasi-coherent(resp.

coherent).

(7) f : Y → X a morphism. F is a quasi-coherent(resp. coherent) OX-module, then f ∗F is
quasi-coherent(resp. coherent).

(8) f : Y → X a morphism,. G is a quasi-coherent OY -module, then f∗G is quasi-coherent.

Proof. It follows from the properties over affine varieties.

Example 22.7 (Push-forward of coherent sheaves). Y = A1
k, X = pt. f : Y → X. Then

f∗OY = Γ(Y,OY ) = k[T ] and OX = k. But k[T ] is NOT a finitely generated k-module.

22.2 §D. Quasi-coherent and Coherent Sheaves on Projective Vari-
eties

(1) From graded modules to quasi-coherent sheaves
Let X ⊆ Pn be a projective variety. Then the homogeneous coordinate ring of X is defined
as

R := k[x0, ..., xN ]/I(X)

where I(X) is the homogeneous ideal of X, then R is a Z-graded ring.

Remark 22.8. R depends on the embedding of X!! See for instance Pn and its Veronese
embedding

νd : Pn → PNk

Definition 22.9.

(1) A graded R-module M is a R-module with a decomposition M = ⊕i∈ZMi such that

Sd ·Mi ⊆Mi+d, d ∈ Z≥0, i ∈ Z
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(2) Given a graded R-module M , we define a OX-module M̃ as following: for ∀0 6= F ∈ R a
homogeneous element, then we have

X
open
⊇ D(F ) 7→ Γ

(
D(F ), M̃

)
=M(F )

where
M(F ) =

{
m

F n

∣∣∣∣ degm = n · deg(F )
}/
∼

and
m

F n
∼ m′

F n′ ⇐⇒ ∃r ∈ Z≥0 such that F r
(
F n′

m− F nm′
)
= 0 in M

Proposition 22.10.

(1) OX = R̃ as a graded R-module.

(2) For ∀ 0 6= F ∈ R a homogeneous element, then

M̃ |D(F ) = M̃F

where view M̃(F ) as a R(F )-module, and R(F ) = Γ (D(F ),OX).

(3) M is a finitely generated R-module, then M̃ is coherent.

Remark 22.11. The converse of (3) is NOT true in general.

Example 22.12. Let Y
i

⊆ X ⊆ PNk be two projective varieties withRX andRY the homogeneous
coordinate rings, respectively. Then there exists a natural suejective homomorphism RX → RY .
Let IY be the kernel. Then we have

0 IY RX RY 0

as RX-modules. Then it induces an exact sequence of OX-modules

0 ĨY R̃X R̃Y 0

which is exactly

0 IY OX i∗OY 0

Lemma 22.13. Let ϕ : M → N be a homomorphism preserving degrees bwtween R-modules.
Assume ϕn :Mn → Nn is surjective for ∀ n >> 0, then ϕ̃ : M̃ → Ñ is a surjective morphism of
sheaves.
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Proof. For 0 6= F ∈ R a homogeneous element, it is enough to show

ϕ(F ) :M(F ) → N(F )

is surjective. Consider y
F r ∈ N(F ), then there exists s ∈ Z>0 such that F sy ∈ im(ϕ) and hence

y

F r
=
F s · y
F s+r

∈ Im
(
ϕ(F )

)

(2) From quasi-coherent sheaves to graded modules

Definition 22.14. Let M be a graded R-module. Given d ∈ Z, then the graded R-module M ,
M(d) is defined to be M with the shifted grading M(d)n :=Mn+d.

Definition 22.15. Let X ⊆ PNk be a projective variety with homogeneous coordinate ring R
and i : X → PNk .

(1) OX(d) := OPN
k
(d)|X := i∗OPN

k
(d) is the sheaf associated to R(d).

(2) If F is an OX-module, then F (d) = F ⊗OX
OX(d).

Remark 22.16.

(1) OX(d) = i∗OPN
k
(d) over D(F ), Γ (D(F ),OX(d)) = homogeneous of degree d in RF , i.e. G

Fn

with degG = d+ n · degF .

(2) If M is a graded R-module, then M̃(d) = M̃ ⊗OX
OX(d).

Definition 22.17. Let F be a quasi-oherent sheaf on a projective variety X ⊆ PNk . Define a
graded R-module as Γ∗F := ⊕d∈ZΓ (X,F (d)) with module structure coming from

Γ (X,OX(d))⊗ Γ (X,F (d′))→ Γ (X,F (d+ d′))

Remark 22.18. Γ∗F depends on the embedding of X into PNk !!

Proposition 22.19. Let F be a quasi-coherent sheaf on a projective variety X ⊆ PNk .

(1) Γ̃∗F ' F as OX-modules.

(2) F is coherent if and only if Γ∗F is a finitely generated R-module.

Remark 22.20.

(1) If F = M̃ for some graded R-module M , then M may be NOT isomorphic to Γ∗F .

(2) there exists a natural homomorphism

Γd :Md → Γ
(
X, M̃(d)

)
by

m 7→ m

1
for all d ∈ Z. But, ingeneral, Γd is neither injective nor surjective.
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23 Lecture 23.
22/11/23.

23.1 §E. Back to Locally Free Sheaves

Let (X,OX) be affine algebraic variety. A OX-module F is locally free of rank r if there exists
an open covering X = ∪i∈IUi such that F |Ui

' O⊕r
Ui
.

Remark 23.1.

(1) We may assume that Ui’s are affine.

(2) Locally free sheaves are coherent as F |Ui
= Ã⊕r

i , Ai = Γ (Ui,OUi
), Ui affine.

(1) Relation with projective modules

Recall 23.2 (Projective A-modules). An A-module M is projective if ∀ surjective homomor-
phism of A-modules g : P → N and a homomorphism of A-modules h : M → N , there exists
h :M → ¶ such that h = g ◦ h.

M

P N 0

∃h

g

Proposition 23.3. Let (X,OX) be an affine algebraic variety, let A = Γ (X,OX) and let M be
a finitely generated A-module. Then M̃ is locally free or rank r if and only if one of following
holds:

(1) there exists f1, ..., fm ∈ A such thatMfi is a free Afi-module of rank r and (1) = 〈f1, ..., fm〉.

(2) ∀x ∈ X, M̃x is a free OX,x-module of rank r.

(3) M is a projective A-module.

Proof. See [D·Eisenbud, GTM 150, Thm A.3.2].

(2) Fibres and Nakayama’s lemma

Definition 23.4. Let (X,OX) be an algebraic variety, F is a coherent sheaf over X, x ∈ X a
point. The fibre of F at x is defined as

F (x) := Fx/mxFx

where Fx is the stalk of F at x and mx is the maximal ideal of OX,x.
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Remark 23.5.

(1) ix : x ↪→ X the natural inclusion. Then F (x) = i∗xF? the left is an algebra, the right is a
sheaf

(2) F (x) is a k-vector space given as following:

OX,x/mx ' k → F (x) = Fx/mxF (x)

dimk F (x) < +∞ as F is coherent. e.g. let F be the sheaf of sections of a vector bundle
V of rank r. Then

(a) F (x) = Vx = fibre of V over x = kr.

(b) Fx = O⊕r
X,x

Proposition 23.6 (Nakayama’s lemma). Let (X,OX) be an algebraic variety, and let F be a
coherent sheaf over X. Then the followings are equivalent:

(1) F is locally free of rank r.

(2) Fx is a free OX,x-module of rank r, for ∀x ∈ X.

(3) F (x) is a k-vector space of dimension r, for ∀x ∈ X.

Recall 23.7 (Nakayala lemma). Let A be a local ring, m = maxiaml ideal of A. M is a finitely
generated A-module. If m1, ...,mr ∈ M are elements in M such that m1, ..., mr ∈ M/mM form
a A/m-basis, then m1, ...,mr form a A-basis for M , e.g. any A/m-basis of M/mM can be lifted
to be a basis of M over A.

(3) Morphisms of vector bundles vs morphisms of locally free sheaves
Let V1, V2 be two vectore bundles over an algebraic variety X. Let F1, F2 be sheaves of sections
of V1 and V2, respectively. Then there exists a natural injection

Homvect(V1, V2) ↪→ HomOX
(F1,F2)

where the left is the homomorphism of vector bundles and the right is the homomorphism of
OX-modules.

Lemma 23.8. Let ϕ ∈ HomOX
(F1,F2). Then ϕ ∈ Homvect(V1, V2) ⇐⇒ ∀ x ∈ X, ϕ(x) :

F1(x)→ F2(x) is of canstant rank, i.e. the rank of the k-liner map is independent of x ∈ X.

Example 23.9. V1 = X × k, V2 = X × k, X = A1
k. Take

ϕ : OX → OX

by
s 7→ x · s

At x = 0, rankϕ(0) = 0, and rankϕ(x) = 1 for x 6= 0.
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(4) Pull-back of locally free sheaves

Recall 23.10. Recall that for f : Y → X, f ∗ = ⊗f−1OX
OY ◦ f−1, where ⊗f−1OX

OY is right
exact and f−1 is exact.

Proposition 23.11. Let f : Y → X be a morphism of varieties.

(1) (Compatible with pull-back of vector bundles).

Let V be a vector bundle over X. Let F , F ′ be the sheaves of sections of V and f ∗V ,
respectively. Then F ′ ' f ∗F .

(2) (Compatible with pull-back of Cartier divisors)

Assume f is dominant and both Y and X are irreducible normal varities. Let D be a
Cartier divisor on X. Then f ∗OX(D) ' OY (f ∗D). It is NOT true for D being a Weil
divisor because OX(D) is NOT locally free in general.

(3) Let 0→ F1 → F2 → F3 → 0 be a short exact sequence of quasi-coherent sheaves on X.

(3.a) Let F be another quasi-coherent sheaf. Then the following sequence

0 F1 ⊗F F2 ⊗F F3 ⊗F 0

is exact if either F is locally free of all Fi are locally free.

(3.b) If all Fi’s are locally free, then

0 f ∗F1 f ∗F2 f ∗F3 0

is exact.

Proof. (1) and (2) follows from the definition.
(3) follows from the following fact:
Let A be a Noetherian ring. Let 0 → M1 → M2 → M3 → 0 be a short exact sequence of
A-modules. Let M be another A-module. Then the following sequence

0 M1 ⊗M M2 ⊗M M3 ⊗M 0

is exact if either M is a free A-module of finite rank or all Mi are free A-modules of finite
rank.

(5) Relations between coherent sheaves and locally free sheaves

Proposition 23.12. Let F be a coherent sheaf over a variety X.

(1) (Generic freeness)

There exists ∅ 6= U ⊆ X open subset such that F |U is locally free.
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(2) (Serre)

If X ⊆ PNk is a projective variety, then there exists finitely many ni ∈ Z with a surjective
morphism

⊕iOX(ni)� F

i.e. F is a quotient of some locally free sheaf over X.

Idea of the proof of (2): Find n >> 0 such that F (n) is globally generated i.e. Γ (X,F (n))⊗
OX → F (n) is surjective. Then r = dimk Γ (X,F (n)) < +∞, hence ⊕ri=1OX(−n)� F .

23.2 §F. Differectials and Cotangent Sheaf

(1) Käler differential

Definition 23.13. Let R be a k-algebra. We define ΩR to be the free R-module generated by
the formal symbols df for all f ∈ R, modulo the relations:

(1) d(f + g) = df + dg, ∀ f, g ∈ R.

(2) d(f · g) = fdg + gdf , ∀ f, g ∈ R.

(3) df = 0, ∀ f ∈ k.

Then elements of ΩR are called (Kähler) differentials of R(over k).

Example 23.14.

(1) R = k[x1, ..., xn]. Then df = ∂f
∂x1
dx1 + · · · + ∂f

∂xn
dxn by (1) + (2) + (3) for ∀ f ∈ R. Hence

ΩR = Rdx1 ⊕ · · · ⊕ Rdxn and we can regard Ω as liner forms on the Zariski tangent space
TxAnk of Ank which depend on x algebraically. More precisely,

TZarAn
k

= Ank × kn
df−→ k

by
(x, (v1, ..., vn)) 7→

∂f

∂x1
(x) · v1 + · · ·

∂f

∂xn
(x) · vh

(2) In general, let R = k[x1, ..., xn]/I(V ) be the coordinate ring of affine algebraic variety V ⊆
Ank . Assume that I(V ) = 〈F1, ..., Fr〉. Then

ΩR = (Rdx1 ⊕ · · · ⊕ Rdxn) /〈dF1, ..., dFr〉

and the elements of ΩR can be viewed as linear maps defined on TpV , p ∈ V which depend
on p algebracially,

TZarV ⊆ V × kn df−→ k f ∈ R
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by
(p, (v1, ..., vn)) 7→

∂f

∂x1
(p) · v1 + · · ·

∂f

∂xn
(p) · vh

Recall from [Chap IV. §C.], for ∀ f ∈ I(V ) = 〈F1, ..., Fr〉, then

df
∣∣
TZar
V
≡ 0

hence ΩR = Rdx1 ⊕ · · · ⊕ Rdxn/〈df, f ∈ I(V )〉 = Rdx1 ⊕ · · · ⊕ Rdxn/〈dFi, 1 ≤ i ≤ r〉.

Let p ∈ V be a point with mp ⊆ I(V ) ⊆ R be the maximal ideal. Then

ΩR ⊗R R/m ' (kdx1 ⊕ · · · ⊕ kdxn)
/〈

n∑
j=1

∂Fi
∂xj

(p)dxj, 1 ≤ i ≤ r

〉

is a k-vector space with dimension dim(TpV−p) and we can regard ΩR⊗RR/m asHomk (TpV − p, k) =
ΩV,p.

24 Lecture 24.
22/11/28.
References for differentials:

1. [Har77] , II, §8.

2. [Mus] , §8.7.

Reference for generic freeness:
H. Matsumura. Commutative algebra, lemma 22.1.
(2) Cotangent sheaf of Pn

Proposition 24.1 (Euler sequence). For n ∈ Z>0, the cotangent sheaf ΩPn of Pn is determined
by an exact sequence:

0 ΩPn OPn(−1)⊕n+1 OPn 0
f g

Proof. Step 1. Construction of f .

Consider i, j ∈ {0, 1, ..., n} with i 6= j. Then the regular function xi
xj
∈ Γ (Uj,OPn),

where Uj = D(xj). Then Left

Remark 24.2. Taking dual yields

0 OPn OPn(1)⊕n+1 Ω∗
X 0

then tensoring with OPn(−1) yields:
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0 OPn(−1) O⊕n+1
Pn Ω∗

X ⊗OPn(−1) 0
f̃

where f̃ is the natural morphism in the definition of OPn(−1), i.e.

OPn(−1) =
{
([l], v) ∈ Pn × Cn+1 | v ∈ l

}
⊆ Pn × Cn+1.

and O⊕n+1
Pn is the trivial vector bundle Pn × Cn+1.

(3) Canonical bundle

Definition 24.3. Let X be a variety, n = dimX.

(1) The tangent sheaf TX is defined as Ω∗
X .

(2) If X is irreducible and normal, we define the canonical bundle ωX as (
∧nΩX)

∗∗

Remark 24.4.

(1) In general, T ∗
X 6= ΩX . We lose many informations of X by taking dual of ΩX . However, if X

is nonsigular and irreducible, then T ∗
X = ΩX = Ω∗∗

X and TX is nonsigular which is the sheaf
of sections of the usual tangent bundle.

(2) In general, ωX is not locally free, by=ut as X is normal and irreducible, thus there exists
Z ⊆ X of codimZ ≥ 2 such that ωX |U =

∧nΩX |U =
∧nΩU = det (ΩX).

Example 24.5 (Canonical bundle of Pn).

Fact 24.6. Let 0→ F → E → G → 0 be a short exact sequence of locally free sheaves. Then
det(E ) ' det(F )⊗ det(G ).
Appling it to Euler sequence of Pn:

0 ΩPn OPn(−1)⊕n+1 OPn 0

We have det (OPn(−1)⊕n+1) ' ωPn ⊗OPn , and thus OPn(−n− 1) ' ωPn .

IX Cohomology of Coherent Sheaves

24.1 §A. Cěch Cohomology

(1) Motivation for shef cohomology

(a) For a short exact sequence 0 → F1 → F2 → F3 → 0 of sheaves on a topological space X.
The induced morphisms

0 Γ(X,F1) Γ(X,F2) Γ(X,F3)
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We denote it by (*) in short, (*) may be NOT surjective at the right hand side in general. So
we can NOT get much informations about Γ(X,F3) by (*). Cohomology gives a natural way
to extend this sequence to the right. We will construct naturally defined groups H i(X,F )

for any sheaf F on X and i ∈ Z≥0 such that there is a long exat sequence

0→ Γ(X,F1)→ Γ(X,F2)→ Γ(X,F3)

→ H1(X,F1)→ H1(X,F2)→ H1(X,F3)

→ H2(X,F1)→ H2(X,F2)→ H2(X,F3)

→ · · ·

(b) If X is a variety and F is a coherent sheaf, then H i(X,F ) is a k-vector spavce. Hence,
apply this to the canonically defined coherent sheaves on X, e.g. OX ,ΩX , TX , ωX ... The
dimensions of the cohomological groups of them are important intrinsic invariants of X
which can be used to distinguish varieties.

(2) Cěch Cohomology
Let X be a topological space. U = (Ui)i∈I is an open covering of X. I is a well-ordered index
set. Let F be a sheaf of abelian groups on X. (i0, ..., ip) ∈ Ip+1, the intersection of Uij for
i = 0, 1, ..., p, is denoted by Ui0...ip .

Definition 24.7. For each p ≥ 0, we define

Cp (U ,F ) =
∏

i0<...<ip

Γ(Ui0...ip ,F )

i.e. if α ∈ Cp(U ,F ), then we have α = (αi0...ip)i0<...<ip with αi0...ip ∈ Γ(Ui0...ip ,F ).

We define the coboundary map

∂p : C
p(U ,F )→ Cp+1(U ,F )

by

α = (ai0...ip)i0<...<ip 7→

(
p+1∑
k=0

(−1)kαi0...îk...ip+1
|Ui0...ip+1

)
i0<...,ip

Example 24.8. X = U0 ∪ U1 ∪ U2.
C0(U ,F ) = {S = (S0, S1, S2)|Si ∈ Γ(Ui,F )}.
C1(U ,F ) = {(S01, S02, S12)|Sij ∈ Γ(Ui ∩ Uj,F )}.
C2(U ,F ) = {S012|S012 ∈ Γ(U0 ∩ U1 ∩ U2,F )}.
∂0(S) = (S01, S02, S12), where
S01 = (−1)0S1|U0∩U1 + (−1)1S0|U0∩U1 = (S1 − S0)|U0∩U1 .
S02 = (−1)0S2|U0∩U2 + (−1)1S0|U0∩U2 = (S2 − S0)|U0∩U2 .
S12 = (−1)0S2|U1∩U2 + (−1)1S1|U1∩U2 = (S2 − S1)|U1∩U2 .
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Lemma 24.9. ∂2 = 0.

C•(U ,F ) = complex obatined as above.

Definition 24.10. Let X be a topological space and let U be an open covering of X. For any
sheaf of abelian groups F onX, we define the p-th Cěch cohomology group of F with respect to the cover U

to be
Ȟp(U ,F ) := Hp(C•(U ,F )) =

Ker ∂p
Im ∂p−1

Proposition 24.11. The canonical map Γ(X,F )→ Ȟ0(U ,F ) is an isomorphism.

Proof. Just by definition of sheaf.

25 Lecture 25.
22/11/30.
References for cohomologies:

(1) [Har77] , III, §1-5, §7.

(2) Mustatǎ, Chapter 10, Chapter 14.

25.1 §B. Brief Introduction of Right Derived Functors

Definition 25.1. Let A be an abelian category.

(1) An object I ∈ A is injective if the functor Hom(−, I) is exact.

(2) Let A ∈ A be an object. An injective resolution of A is an exact complex

0 A I0 I1 · · · Im · · ·ε d0 d1

such that Im(m ≥ 0) are injective objects.

(3) Let F : A → B be a covariant left exact functor of categories with A is an abelian category
having enough injective objects(every object in A has an injective resolution). Then
the right derived functor RiF : A → B is a functor such that if 0 → A

ε→ I• is an
injective resolution of an object A ∈ A , then RiF (A) = H i(F (I•)) for i ≥ 0.

H i(F (I•)) =
Ker(F (di))

Im(F (di−1))

and we have
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0 F (A) F (I0) F (I1) · · · F (Im) · · ·F (ε) F (d0) F (d1)

where is exact at F (I0).

Remark 25.2.

(1) RiF (A) does not depend on the resolution 0→ A
ε→ I•.

(2) Let (X,OX) be a ringed space. Then the category of sheaves of OX-modules has enough
injectives.

Definition 25.3.

(1) Let (X,MOX) be a variety. ThenH i(X,−) is the right derived functor of Γ(X,−), i.e. ∀F a
quasi-coherent sheaf on X, taking an injective resolution 0→ F

ε→ I0
d0→ I1

d1→ I2 → · · · .
Then

H i(X,F ) =
Ker(Γ(di))

Im(Γ(di−1))

and we have

0 Γ(X,F ) Γ(X,I0) Γ(X,I1) Γ(X,I2) · · ·Γ(ε) Γ(d0) Γ(d1) Γ(d2)

which is exact at Γ(X,I0).

(2) Let f : (X,OX)→ (Y,OY ) be a morphism between varieties. Then Rif∗ is the right derived
functor of f∗, which are called the higher direct images.

Remark 25.4.

(1) H i = RiΓ(X,−) is a special case of Rif∗(−): taking f : X → pt to be a constant map to a
point. Then f∗(−) = Γ(X,−).

(2) H0(X,F ) = Γ(X,F ).

25.2 §C. Comparing Cěch Cohomologies and Sheaf Cohomologies

(1) Serre’s Theorem A and Theorem B

Theorem 25.5 (Serre, [Har77] , III, §3). Let X be an affine algebraic variety, F a quasi-coherent
sheaf on X. Then

(1) F is globally generated.

(2) Hq(X,F ) = 0 for ∀ q > 0.
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proof is left
(2) Leray’s Theorem

Definition 25.6. Let F be a sheaf of abelian groups over a topological space X. Let U =

(Ui)i∈I be an open covering of X. Then U is called F -acyclic if for ∀ q > 0, ∀ p ≥ 0, and ∀
(i0, ..., ip) ∈ Ip+1, we have

Hq(Ui0...ip ,F |Ui0...ip
) = 0

Theorem 25.7 (Leray). Let F be a sheaf of abelian groups over a topological space X. Let
U = (Ui)i∈I be an open covering of X.

(1) There exists a natural canonical functorial morphism, ∀q ≥ 0.

Ȟq(U ,F )→ Hq(X,F )

(2) If the covering U is F -acyclic, then this morphism (?) is an isomorphism.

Proof. [Har77] , III, Lemma 4.4 and Theorem 4.5

Corollary 25.8. Let X be affine algebraic variety, U an affine open covering of X, F a quasi-
coherent sheaf of X. Then we have a natural canonical functorial isomorphism

Ȟq(U ,F )→ Hq(X,F )

for all q ∈ Z≥0.

Proof. U, V ⊆ X be affine open subsets⇒ U ∩V is an affine open subset of X(by separateness),
so U is F -acyclic.

25.3 §D. Calculation by Cěch Cohomology: an example

In this section, we aim to use Leray’s Theorem to calculate the cohomologies of OX , where
X = Ank \ {0}.
(1) Künneth formula
Let K• and L• be two complexes of vector spaces over k. We define the complex K• ⊗ L• by
setting

(1) (K• ⊗ L•)n =
⊕
p+q=n

Kp ⊗ Lq.

(2) d(x⊗ y) = dx⊗ y + (−1)px⊗ dy, where x ∈ Kp, y ∈ Lq.
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The complex K•⊗L• is called the tensor product of K• and L•. We have a canonical linear
map

µ :
⊕
p+q=n

Hp(K•)⊗Hq(L•)→ Hn(K• ⊗ L•)

defined as
µ : ([x]⊗ [y]) 7→ [x⊗ y]

Proposition 25.9. The linear map µ is an isomorphism.

proof is left

Remark 25.10 (Künneth theorem, general form). Let X,Y be two varieties and let F , G be
quasi-coherent sheaves on X and Y respectively. Then

Hn(X × Y, p∗XF ⊗ p∗Y G ) =
⊕
p+q=n

Hp(X,F )⊗Hq(Y,G )

where

X × Y Y

X

pX

pY

Hint: Eilenberg-Zilber theorem.

(2) Calculation of Hq(A2
k \ {0},O)

Let X = A2
k \ {0} and let (x0, x1) be the coordinate of A2

k. U0 = D(x0) ⊆ X. Then X = U0 ∪U1

and U0, U1 are both aavs.

0 C0(U ,OX) = Γ(U0, X)⊕ Γ(U1,OX) Γ(U0 ∩ U1,OX) 0

by
(f, g) 7→ (f − g)|U0∩U1

Consider the complex K• defined as

0 (K• ⊗K•)0 (K• ⊗K•)1 (K• ⊗K•)2 0

0 Γ(X,OX) C0(U ,OX) C1(U ,OX) 0

0 Γ(A2
k,OA2

k
) Γ(Ui,OX) Γ(U0 ∩ U1,OX) 0

Hartogs

102



See that Γ(A)
Left
(3) General case: X = An+1

k \ {0}
Consider the affine open covering U = (Ui)0≥i≥n, Ui = D(xi) ⊆ X. Then we have

Hq(X,OX) = Ȟq(X,OX) = Hq+1(K• ⊗ · · · ⊗K•︸ ︷︷ ︸
(n+1)-times

)

Hence

Hq(X,OX) =


0 q 6= 0 or n

k[x0, ..., xn] q = 0

k-vector space generated by 1
x
m0
0 ···xmn

n
,mi > 0 q = n

Corollary 25.11. Ank \{0} is not affine for n ≥ 2, because Hn(X,OX) 6= 0 for n ≥ 2 and Serre’s
Theorem A and B.

25.4 §E. Calculation of Sheaf Cohomologies

(1) Grothendieck vanishing theorem

Theorem 25.12 (Grothendieck). Let X be a Noethrian topological space of dimension n, and
let F be a sheaf of abelian groups. Then

Hq(X,F ) = 0 if q > n

Proof. [Har77] , III, Theorem 2.7.

Corollary 25.13. Let X be affine algebraic variety of dimension n. F is a quasi-coherent sheaf.
Then

Hq(X,F ) = 0 if q > n

(2) Finiteness

Theorem 25.14. Let X be a projective algebraic variety, F a coherent sheaf on X. Then

dimkH
q(X,F ) < +∞, ∀q ∈ Z

Proof. Reduce to projective spaces. [Har77] , III, §5.2.

Remark 25.15.

(1) If X is not projective, then the theorem does not hold, e.g. H0(Ank ,OAn
k
) = k[x1, ..., xn].
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(2) χ(t) =
n∑
q=0

(−1)q dimkH
q(X,F (t)) is a polynomial in t, where F (t) = F⊗OX(t) and t ∈ Z.

(3) Kodaira’s vanishing Theorem

Theorem 25.16. Let X be an irreducible nonsigular projective variety, L an ample line bundle
on X. Then

Hq(X,ωX ⊗L ) = 0, ∀q ≥ 1

where ωX =
∧nΩX is the canonical bundle of X, n = dimX.

(4) Serre’s duality

Theorem 25.17. Let X be an irreducible nonsigular projective variety. Let F be a locally free
coherent sheaf on X. Then there exists a natural isomorphism

H i(X,F ) ' Hn−i(X,F ∗ ⊗ ωX)

where i ∈ Z≥0 and F ∗ = H omOX
(F ,OX) is the dual sheaf of F .

Corollary 25.18 (Cohomologies of projective spaces). Let n ∈ Z>0. Let S = k[x0, ..., xn] be
the natural Z-graded k-algebra.

(1) The natural morphism S →
⊕
m∈Z

H0(Pn,OPn(m)) is an isomorphism of graded S-modules.

In particular, we have

H0(Pn,OPn(m)) =

Sm m ≥ 0

0 m < 0

(2) H i(Pn,OPn(m)) = 0, ∀1 ≤ i ≤ n− 1, ∀m ∈ Z.

(3) Hn(Pn,OPn(m)) ' H0(Pn,OPn(−m− n− 1)) =

S−m−n−1 m ≥ −n− 1

0 m > −n− 1

Proof.

(1) H0(Pn,OPn(m)) = Γ(Pn,OPn(m)) =

Sm m ≥

0 m < 0
See [VII, §H].

(2) Recall that ωPn = OPn(−n− 1), hence

H i(Pn,OPn(m)) ' Hn−i(Pn,OPn(m)∗ ⊗ ωPn)

' Hn−i(Pn,OPn(−m)⊗OPn(−n− 1))

' Hn−i(Pn,OPn(−m− n− 1))
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Hence, by Kodairas’s vanishing theorem, if −m > 0, n > i, then Hn−i(Pn,OPn(−m − n −
1)) = 0. Thus if −m > 0 and n > i, then

H i(Pn,OPn(m)) = 0 (1)

On the other hand,

H i(Pn,OPn(m)) ' H i(Pn,OPn(m)⊗ ω∗
Pn ⊗ ωPn)

H i(Pn,OPn(m+ n+ 1)⊗ ωPn)

= 0 if m+ n+ 1 > 0 and i > 0

In all, H i(Pn,OPn(m)) = 0, ∀1 ≤ i ≤ n− 1, ∀m ∈ Z. For i = n, using Serre’s duality.

26 Lecture 26.
22/12/05.
(5) Direct sum

Proposition 26.1. Let (Fi)i∈I be a family of quasi-coherent sheaves on affine algebraic variety
X. Then we have a natural isomorphism for ∀q ≥ 0.

Hq(X,
⊕
i∈I

Fi) '
⊕
i∈I

Hq(X,Fi)

Proof. Take a suitable affine open covering of X and the use Cěch cohomology or prove that
cohomology commutes with direct limit[[Har77] , II, Proposition 2.9].

(6) Long exact sequence

Proposition 26.2. Let X be affine algebraic variety. Let 0 → F → E → G → 0 be an exact
sequence of coherent sheaves. Then we have a natural long exact sequence i ∈ Z.

· · · H i(X,F ) H i(X,E ) H i(X,G ) H i+1(X,F ) · · ·

Corollary 26.3 (Theorem A and B). Let X be an irreducible normal projective variety. Let L

be an ample line bundle on X. F a coherent sheaf on X. Then there exists an integer N > 0

such that for ∀m ≥ N , we have

1. F ⊗L ⊗m is globally generated.

2. Hq(X,F ⊗L ⊗m) = 0, ∀q ≥ 1.
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Proof. Without loss of generality, we may assume that L is very ample. In particular, there
exists i : X ↪→ PN an inclusion as a closed subset and L = OPN (1)|X . Thus we may denote L

by OX(1).
On the other hand, as F is coherent and X is projective, there exists niZ, 1 ≥ i ≥ s such that
there exists a surjective morphism

s⊕
i=1

OX(ni)� F [Chap. VII. § E]

Proof is left

Corollary 26.4. We define hi(X,F ) := dimkH
i(X,F ). Then

hi(Pn,TPn) =

n2 + 2n i = 0

0 i > 0

Proof. Consider the Euler sequence:

0 ΩPn OPn(−1)⊕n+1 OPn 0

Taking dual yields:

0 OPn OPn(1)⊕n+1 TPn 0

Take long exact sequence:

· · · H i(Pn,OPn(1)⊕n+1) H i(Pn, TPn) H i+1(Pn,OPn(1)) · · ·

0 0

For i ≥ 1. Hence, we have H i(Pn, TPn) = 0 for i ≥ 1.

0 H0(Pn,OPn) H0(Pn,OPn(1)⊕n+1) H i(Pn, TPn) H1(Pn,OPn)

k 0

H0(Pn,OPn(1)⊕n+1) '
⊕

H0(Pn,OPn(1)) ' S⊕n+1
1 ⇒ h0(Pn,OPn(1)⊕n+1) = (n+ 1)2.

By the exact sequence, we have

h0(Pn, TPn) = h0(Pn,OPn(1)⊕n+1)− h0(Pn,OPn)

= (n+ 1)2 − 1

= n2 + 2n
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Corollary 26.5 (Exercise). hi(Pn,ΩPn) =

0 i 6= 1

1 i = 1

(7) Push-forward and pull-back

Proposition 26.6. Let i : Y ↪→ be a closed subvariety. Then for any coherent sheaves F on Y
and G on X, we have

(i) Hq(Y,F ) = Hq(X, i∗F ), ∀q ≥ 0.

(ii) i∗i∗F = F .

(iii) (projective formula) If G is locally free, then we have

i∗(F ⊗ i∗G ) = i∗F ⊗ G

In particular, if F = OY , we get i∗i∗G = i∗OY ⊗ G .

Remark 26.7. Let G be a locally free sheaf on X. We want to compute Hq(Y, i∗G ). By
(i)+(iii), we get

Hq(Y, ∗G ) ' Hq(Y, ∗OY ⊗ G )

Then we consider the following short exact sequence:

0 IY OX i∗OY 0

Tensor it with G yields:

0 IY ⊗ G OX ⊗ G i∗OY ⊗ G 0

Corollary 26.8. Let X ⊆ Pn+1 be a nonsingular hypersurface of degree d. Then

hq(X,OX) =


1 q = 0

0 0 < q < n

hn+1(Pn+1,OPn+1(−d)) q = n+ 1

In particular, we have hn+1(Pn+1,OPn+1(−d)) = h0(Pn+1,OPn+1(d− n− 1)).

Proof. Consider the short exact sequence:

0 IX OPn+1 i∗OX 0

where i : X ↪→ Pn+1. X is a prime Cartier divisor in Pn+1 of degree d. Then

IX = OPn+1(−X) ' OPn+1(−d)

Hence, we get LEFT
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26.1 §F. Serre’s GAGA Principle

k = C, X ⊆ Pn(C) an irreducible normal projective variety.
Xan = analytic space associated to X, which means X(as sets)+ Euclidean topology on X i.e.
Pn(C) =

⋃n
i=0 Ui where Ui ' AnC = Cn with Euclidean topology on Ui is the same as that on Cn.

Xan is a compact complex manifold.
OXan = sheaf of holomorphic functions on Xan.
Then the identity map: Idan : (Xan,OXan) → (X,OX) is a morphism of locally ringed spaces.
Let F be a coherent sheaf on X. Then the analytic sheaf F an associated to F is defined as

F an := (Idan)∗F = (Idan)−1F ⊗(Idan)−1OX
Oan
X

Fact 26.9.

(1) F 7→ F an is an exact functor.

(2) F an is an analytic coherent sheaf. Ref: Demailly. Complex Analytic and Differential II, §3.
IV. Sheaf Cohomology.

Theorem 26.10 (Serre, GAGA principle). Let X be an irreducible normal projective variety.
Let Xan be the analytic space associated to X. For F a coherent sheaf on X, let F an be the
analytic sheaf associated to F .

(1) ∀q ≥ 0, there exists a canonical isomorphism

Hq(X,F ) ' Hq(Xan,F an).

(2) If F and G are two coherent sheaves, then there exists a canonical isomorphism

HomOX
(F ,G ) ' HomOan

X
(F an,G an).

(3) For any analytic coherent sheaf on Xan, there exists a unique coherent sheaf F on X such
that

F an ' E .

Corollary 26.11 (Chow). Let X ⊆ Pn(C) be a compact complex manifold. Then X is projec-
tive.

Proof. I an
X ↪→ OPn,an , where I an

X is the analytic ideal sheaf of X. By Oka’s coherence Theorem,
I an
X and OPn,an are coherent. By GAGA principle, both I an

X and OPn,an come from algebraic
coherent sheaves, i.e. there exists

IX OPn

I an
X OPn,an

analytic analytic

Hence, X = Supp(OPn,an/I an
X ) = Supp(OPn/IX) is algebraic.
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27 Lecture 27.
22/12/07.

28 Lecture 28.
22/12/12. (5) Second example of projective morphisms: blowing-up
Construction I−(Blowing-up at a finite set of regular functions)
Let X ⊆ Ank be an affine algebraic variety. For some given regular functions f1, ..., fr ∈ Γ(X,OX)
on X, we set U = X \ V (f1, ..., fr). As f1, ..., fr then do not vanish simultaneously at any point
of U , there is a well-defined morphism

f : U → Pr−1

by
x 7→ [f1(x) : · · · : fr(x)]

We consider its graph

Γf ==
{
(x, f(x)) ∈ U × Pr−1|x ∈ U

}
⊆ U × Pr−1

Then Γf is closed in U × Pr−1, but in general NOT in X × Pr−1. The closure of Γf in X ×Pr−1

is called the blowing-up of X at f1, ..., fr. We usually denote it by X̃ ⊆ X × Pr−1 and there
is a natural projective morphism π : X̃ → X to the first factor.

Remark 28.1 (Exceptional sets).

(1) Let f : X → Y be a birational morphism. Let U be the largest open subset of Y such that
f−1(U)→ U is an isomorphism. Then the exceptional set Ex(f) is defined as X \f−1(U).

(2) Let π : X̃ → X be the blowing-up as Construction I. Then π induces an isomorphism
Γf → U . In particular, Ex(π) ⊆ X̃ \ π−1(U).

(3) For r = 1, i.e. the blowingup of X at one regular function f , if X is irreducible and f 6= 0,
the π : X̃ → X is an isomorphism:

Γf
open
⊆ X × P0 = X

Which means Γf in X × P0 = X × P0 = X̃ by irreducibility.

(4) The blowing-up X̃ ⊆ X × Pr−1 of X at f1, ..., fr satisfies

X̃ ⊆
{
(x, y) ∈ X × Pr−1|yifj(x) = yjfi(x), ∀1 ≤ i, j ≤ r

}
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Example 28.2 (Blowing-up of Ank at coordinate functions). Let π : Ãnk → Ank be the blowing-up
of Ank at X1, ..., Xn. Then

Ãnk =
{
(x, y) ∈ Ank × Pn−1|yixj = yjxi ∀1 ≤ i, j ≤ n

}
:= Y

Claim: Y = Ãnk .
Proof of the claim: Consider the affine open subset Ui = {(x, y) ∈ A× Pn−1|y1 = 1}. Then
Y ∩ U1 = {Xj = X1Yj|i = 2, ..., n} because YiXj = YiX1Yj = XiYj, ∀i, j. There exists an
isomorphism:

Ank → Y ∩ U1

by
(x1, y2, ..., yn) 7→ (x1, x1y2, ..., x1yn)[1 : y2 : · · · : yn]

The same holds for the open subsets Ui of Y where yi = 1, i = 2, ..., n. Hence Y is covered by
Y ∩ Ui ' Ank and (1, ..., 1)[1 : · · · : 1] ∈ ∩ni=1(Y ∩ Ui)
⇒ Y is irreducible and Y = Ãnk .

29 Lecture 29.
22/12/14.

Fact 29.1 (Blowing-up depend only on ideals). The blowing-up of affine algebraic variety X at
f1, ..., fr ∈ A(X) = Γ(X,OX) depends only on ideal I = 〈f1, ..., fr〉 ⊆ A(X) i.e. if f ′

1, ..., f
′
s ∈

A(X) such that 〈f ′
1, ..., f

′
s〉 = I and let π : X̃ → X and π′ : X̃ ′ → X be the blowing-up of X at

f1, ..., fr and f ′
1, ..., f

′
s respectively. Then there exists a unique isomorphism g : X̃ → X̃ ′ fitting

in the following commutative diagr[AM94]

X̃ X̃ ′

X

∃!g

π π′

Construction II−(Blowing-up at ideals)

(a) Let X be affine algebraic variety. Let I ⊆ A(X) be an ideal. The blowing-up of X at I
is defined as the blowing-up of X at any finite set of generators of I.

(b) Let X be affine algebraic variety. Let Z ⊆ X be a closed subvariety. The blowing-up of
X at Z is defined as the blowing-up of X at I(Z) ⊆ A(X). In this case, we also call Z the
centre of the blowing-up.

Example 29.2.
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(1) (Blowing-up of Ank at (0,...,0))

Let π : Ãnk → Ank be the blowing-up of Ank at (0, ..., 0). Then Ã = {(x, y) ∈ Ank × Pn−1|xiyj = xjyi, 1 ≤ i, j ≤ n},
and E = π−1(0, ..., 0) = (0, ..., 0) × Pn−1 ⊆ Ãnk , where dimPn−1 = n − 1 and dim Ãnk = n.
Ãnk ∩ {Yi 6= 0} := Ui ' Ank , consider

Ank
φi→ Ãnk ]subseteqA

n
k × Pn−1 pr1→ Ank

by

(z1, ..., zn) 7→ (z1zi, ..., zi−1zi, zi, zi+1zi, ..., znzi)[z1 : · · · : zi−1 : 1 : zi+1 : · · · : zn]

E ∩ Ui = pr1
−1(0, ..., 0) = {zi = 0} ⊆ Ank . Geometrically, the blowing-up separates the lines

passing through the origin by sending the point x ∈ l to (x, [l] ∈ P(kn) = Pn−1) ∈ Ank×Pn−1.

(2)(blosing-up of Ank at a linear subspace)
Let π : Ãnk → Ank be the blowing-up of Ank at V (x1, ..., xr) ⊆ Ank . Then

Ãnk =
{
(x, y) ∈ Ank × Pr−1|xiyj = xjyi, 1 ≤ i, j ≤ r

}
which means

π−1(V (x1, ..., xr)) = V (x1, ..., xr)× Pr−1︸ ︷︷ ︸
dim=n-1

⊆ Ãnk︸︷︷︸
dim=n

Construction III−(general case)
Let X be a variety, I ⊆ OX an ideal sheaf. The blowing-up π : X̃ → X of X at I is
a surjective proper birational morphism such that if X = ∪Ui is an affine open covering and
I |Ui

= Ĩi, where Ii ⊆ A(Ui) is an ideal, then

π|π−1(Ui):π−1(Ui)→Ui

is the blowing-up of Ui at Ii.
Basic properties of blowing-up

Proposition 29.3.

(1) The blowing-up exists.

(2) The inverse image ideal sheaf I ′ = π−1I · OX̃ is an invertible sheaf and is π-ample. In
particular, π is projective.

(3)

30 Lecture 30.
22/12/19.
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